
AD-A283 633 '

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

®rELECTED, AU -, -2 1994THESIS G

A SCALABLE DECENTRALIZED GROUP
MEMBERSHIP SERVICE FOR AN

ASYNCHRONOUS ENVIRONMENT

by

David S. Neely

June, 1994

Thesis Advisor: Shridhar B. Shukla

Approved for public release; distribution unlimited.

94-26832
I 11111111111I1Ifllli llllhlilJX~llillll ..• 9 4 8 2 3 0 2 8

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704
blic reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing

*struction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
* fonnation. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions

or reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
ighway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project

0704-0188) Washington DC 20503.

AGENCY I USE ONLY (Leave blank) REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1994 Master's Thiesis

4. TITLE AND SI JBTITLE 5. FIUNDING NUMBERS
A SCALABLE DECENTRALIZED GROUP MEMBERSHIP SERVICE FOR AN
ASYNCHRONOUS ENVIRONMENT

AITH()R(S)
D)avid S. Neely

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

I. SI JPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of

Defense or the IU.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, distribution unlimited

13. ABSTRACT (maximum 200 words) This thesis presents a globally scalable, decentralized group membership service to
manage client process groups operating in a distributed, asynchronous environment. This group membership service is totally
scalable, handling process groups spanning a single LAN to groups spanning the entire global Internet equally well. It
provides for nested and overlapping groups, as well as multiple groups residing on a single LAN. It also provides various
Quality of Service selections which permit individual groups to be configured for an optimal balance between high quality with
strong consistency semantics for group membership, and weaker consistency semantics with reduced complexity and latency.

This thesis describes the complete design of the protocol used to implement the group membership service. It presents the
design requirements and goals, and underlying assumptions about the network. The various Quality of -Service selections
provided by the group membership service are described in detail, as well as the interface between the process groups, the
membership service, and the underlying network. The use of a hierarchical architecture to obtain the desired scalability,
flexibility, and robustness is explained. A proof of correctness for the protocol is presented, and a partial implementation of the
group membership service is described.

14. St JBJECT TERMS group membership, process groups, scalability, multicast, reliable 15. NUMBER OF PAGES
distributed computing 194

16. PRICE CODE

17. SECI URITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF CLASSIFICATION OF ABSTRACT
REPORT THIS PAGE ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239.18

Approved for public release, distribution unlimited

A SCALABLE DECENTRALIZED
GROUP MEMBERSHIP SERVICE

FOR AN ASYNCHRONOUS ENVIRONMENT

by

David S. Neely
Lieutenant, United States Navy

B.S.C.S., University of Washington, 1986

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June, 1994

Author: _ _ _ _ ___

David S. Neely /

Approved by:___
Shridhar B. Shukla, Thesis Advisor

G. M. Lundy o

Michael A. Morgan, Chicnan
Department of Electrical and Computer Engineering

ii

ABSTRACT

This thesis presents a glo. ., scalable, decentralized group membership service to

manage client process groups operating in a distributed, asynchronous environment. This

group membership service is totally scalable, handling process groups spanning a single

LAN to groups spanning the entire global Internet equally well. It provides for nested and

overlapping groups, as well as multiple groups residing on a single LAN. It also provides

various Quality of Service selections which permit individual groups to be. configured for

an optimal balance between high quality wi' -, or-. onsistency semantics for group

membership, and weaker consistency semantics with, -du,'ed complexity and latency.

This thesis describes the complete design of the protocol used to implement the group

membership service. It presents the design requirements and goals, and underlying

assumptions about the network. The various Quality of Service selections providet4 by the

group membership service are described in detail, as well as the interface betweev tie

process groups, the membership service, and the underlying network. The use oi- a

hierarchical architecture to obtain the desired scalability, flexibility, and robustness is

explained. A proof of correctness for the protocol is presented, and a partial

implementation of the group membership service is described.
Accesion For

NTIS CRA&I

DTIC TAB

Unannounced 0

Justification

By-.

Distribution I

Availability Codes

Avail and/or
Dist Special

TABLE OF CONTENTS

1. INTRODUCTION .. I

A. BACKGROUND .. I

B. SCOPE AND ORGANIZATION ... 3

11. ATTRIBUTES OF A MEMBERSHIP SERVICE 4

A. DEFINITIONS AND ASSUMPTIONS ... 4

1. T he N etw ork 4

2. T he Processes 5

B. DESIRABLE ATTRIBUTES OF A MEMBERSHIP SERVICE 5

C. MEMBERSHIP SERVICE DESIGN GOALS 7

1. S calability .. 7

2. E ffi ciency .. 8

3. Resilience to Failures and Partitions ... 8

4. Levels of Consistency .. 9

5. Membership and Name Scope Control ... 9

6. Selectable Quality of Service ... 10

D. MEMBERSHIP SERVICE INTERFACES 10

1. Network Protocol Layers ... 10

2. U ser Interface ... 11

a. Inform ational .. 12

b. Explicit Membership System Calls ... 12

c. Implicit Membership Altering Events ... 13

3. System Configuration Interface .. 13

E. CURRENT PROTOCOLS 13

III. MEMBERSHIP SERVICE ARCHITECTURE 16
A. PHYSICAL HIERARCHY ... 16

1. M servers and M ember Interfaces ... 17

2. Organization and Configuration ... 18

a. Logical H ierarchy ... 18

b. Physical Topology ... 19

c. Semi-static Configuration .. 20

iv

d Failures, Partitfions, and Dynamic Reformation 21

3. M onitoring Set 22

a. Definition and Purpose .. 22

b. Structure ... 22

c. Failure Detection .. 23

4. Change-processing Core-set ... 23

a. D efinition ... 23

b. Purpose .. 23

c. Structure .. 25

d Change-processing Sequence ... 25

e. Multicasts and Failure Detection .. 26

5. LAN M server M onitoring ... 26

6. H ierarchical Structure .. 27

a. Collapsing the Tree ... 27

b. Parent M servers .. 28

B. APPLICATION GROUPS .. 29

1. Application Groups and the Physical Hierarchy 29

a. Scalability .. 29

b. Consistency ... 29

c. Nam ing ... 30

d Membership Scope Control ... 31

2. M em ber Interfaces ... 32

a. Purpose .. 32

b. Application Member Process Monitoring 32

3. Application Group Change Processing ... 33

IV. MEMBERSHIP SERVICE PROTOCOLS 34
I. General M essage Types ... 34

2. General M essage Form at ... 38

3. General State of Mservers and MIs .. 40

a. M servers ... 40

b. M ls .. 40

4. Physical and Application Group Protocols .. 41

A. PHYSICAL MONITORING PROTOCOL 41

1. Pairw ise M onitoring ... 41

V

2. Failure Detection, Timeouts, and Retries ... 42

B. APPLICATION GROUP MONITORING 43

C. PHYSICAL CORE-SET CHANGE PROCESSING 43

I. C oo rd inato r 4 3

2. Types of C hanges ... 44

a. R equests ... 44

b. F ailures ... 45

c. Dynamic Reconfigurations ... 45

3. Ordering and Priority of Change Processing 46

4. The Basic Change-processing Protocol ... 48

a. Timeouts and Retries For All Messages 50

b. Virtually Simultaneous Changes ... 54

5. Coordinator failure ... 62

D. APPLICATION GROUP CHANGE PROCESSING 71

i. M Is ... 7 1

2. M servers 73

E. PARTITION RESOLUTION ... 76

1. Dynamic Reconfiguration of Physical Core-set 76

a. Perceived Failures and Partitions .. 76

b. Automatic Reformation Using the Shared Multicast Group 76

c. U1nique Names and Addresses of Partitioned Core-sets 78

2. Dynamic Reconfiguration of Application Groups 79

a. Reconfiguration Rules ... 79

V. CORRECTNESS ARGUMENTS 82
A. ASSUMPTIONS .. 82

B. TERMS AND DEFINITIONS .. 83

1. C hange E vents .. 83

2. Change Event Priority .. 83

3 . Iso latio n ... 84

4 . G o ssip 84

S. G roup V iew ... 84

a. D efi nition ... 84

b. R em arks .. 84

6 . G roup P artition .. 85

vi

a. D efi nition ... 85

b. R em arks .. 85

7. Group M em bership Protocol ... 85

a. D efinition .. 85

b. R em arks 86

C. REMARKS ON THE PROTOCOL STRUCTURE 86

D. CORRECTNESS ARGUMENTS ... 88

I . C la im I 8 8

2 . P ro o f ... 8 8

a. At the coordinator .. 88

b. At the non-coordinator ... 89

3 . C laim 2 ... 8 9

4 . P ro o f ... 8 9

5 . C laim 3 ... 9 0

6 . P roof .. . 90

7. T heo rem .. 9 1

8 . P ro o f ... 9 1

VI. MEMBERSHIP SERVICE IMPLEMENTATION 92
A. MULTICASTING ... 92

1. IP M ulticast 92

a. IP Multicast Extensions ... 93

b. IP Multicast Implementation ... 95

2. M caster program ... 97

a. Wcaster Design Decisions ... 97

b. Differencesfrom IP Multicast .. 99

c. M caster Algorithm .. 104

B.NMSERVER ... 106

1. Internal State and Data Structures .. 107

2. Algorithm and Explanation .. 112

C. MEMBER INTERFACE ... 116

1. Internal State and Data Structures ... 117

2. Algorithm and Explanation .. 118

VII. CONCLUSIONS AND FUTURE WORK 120
A. CONCLUSIONS .. 120

vii

B. FUTURE WORK .. l10
APPENDIX ... 122

LIST OF REFERENCES .. 176

INITIAL DISTRIBUTION LIST 179

viii.,

LIST OF TABLES

Table 1: Desirable Attributes of a Membership Service 6

Table 2: A Summary of Existing Membership Protocols 14

Table 3: Attributes of the M embership Service ... 15

Table 4: M S General M essage Types .. 35

Table 5: M S General M essage Fields ... 39

Table 6: M server Internal State Variables ... 109

ix

LIST OF FIGURES

Figure 1: Process Group Configurations ... I

Figure 2: Membership Service and Application Process Groups 2

Figure 3: Protocol Layers .. I I

Figure 4: G lobal H ierarchy ... 17

Figure 5: Logical M S Hierarchy ... 19

Figure 6: Physical M S Hi erarchy ... 20

Figure 7: M onitoring-set of M servers .. 22

Figure 8: Change-processing Core-set of Mservers 24

Figure 9: LAN Mserver Monitoring of MIs ... 27

Figure 10: "Collapsed" M S Architecture 28

Figure 1: M server M essages .. 36

Figure 12: Member Interface (MI) Messages ... 37

Figure 13: Membership Service General Message Format 38

Figure 14: Physical M onitoring Protocol ... 41

Figure 15: Reliablereceive Algorithm .. 42

Figure 16: Basic Two-Phase Change-Processing Protocol 48

Figure 17: Coordinator Basic Change Protocol ... 49

Figure 18: Non-coordinator Basic Change Protocol .. 49

Figure 19: Message Timeout, Retries, and Failure Detection 50

Figure 20: Reliablemultireceive Algorithm ... 50

x

Figure 21: Lost or Delayed ACK Message During Initiate Phase 5...............1............ 5

Figure 22: Lost or Delayed ('ommit M essage ... 52

Figure 23: Lost or Delayed A('K Message During Initiate Phase 53

Figure 24: Augmented Reliablereceive Algorithm ... 55

Figure 25: Augmented Reliablemultireceive Algorithm 57

Figure 26: Resolution of Overlapping Changes .. 58

Figure 27: Resolution of Virtually Simultaneous Changes 59

Figure 28: Virtually Simultaneous and Overlapping Changes 61

Figure 29: Election and Change-priessing Protocol 62

Figure 30: Broadcast Election Protocol .. 63

Figure 31: Compressed Election and Change-processing Protocol 65

Figure 32: Resume-change Algorithm ... 65

Figure 33: Coordinator Failure During Initiate Phase 66

Figure 34: Coordinator Failure with Lost Initiate Message 67

Figure 35: Coordinator Failure in Commit Phase ... 68

Figure 36: Coordinator Failure with Lost Messages ... 69

Figure 37: Coordinator Failure with Simultaneous Changes 70

Figure 38: Application Group Change Protocol ... 71

Figure 39: Submitting MI Application Group Change Protocol 72

Figure 40: Non-submitting MI Application Group Change Protocol 72

Figure 41: Non-core-set Mserver Application Group Change Protocol 73

Figure 42: Core-set Mserver Application Group Change Protocol 74

xi

Figure 43: Application Group Change With Lost Submit Message 75

Figure 44: Application Group Change With Lost Direct Message 75

Figure 45: Application Group Change With Failed Coordinator 75

Figure 46: Partitioning of a Core-set 77

Figure 47: Partitioning of a Core-set .. 78

Figure 48: IP M ulticast 93

Figure 49: IP M ulticast Layered M odel ... 94

Figure 50: IP Socket Address Structure (Sockaddr in) 96

Figure 51: M caster Data Structures .. 99

Figure 52 IP Unicast, Multicast, and Mcaster Using Separate Sockets 100

Figure 53: Extended Format Mcaster Message Structure 103

Figure 54: Multicasting Using Extended Format Mcaster Messages 104

Figure 55: M caster Algorithm 105

Figure 56: Mserver Data Structures and Internal State 108

Figure 57: M server Core Table .. 110

Figure 58: Mserver Core-set Corresponding to Core Table in Figure 57 110

Figure 59: M server Requests List ... I11

Figure 60: M server Application Groups List ... I11

Figure 61: Mserver Current and Previous Change Storage 112

Figure 62: M server Algorithm ... 113

Figure 63: Initial Parameters M essage Format ... 115

Figure 64: MI Data Structures and Internal State .. 117

xii

Figure 65: M I A lgorithm ... 8

xiii

ACKNOWLEDGMENT

I would like to express my sincere gratitude and appreciation to Professor Shridhar

Shukla for the help he provided in the completion of this thesis. He has been not only an

advisor, but a mentor, collaborator, partner, and friend. Without his extensive

contributions, the accomplishments of this thesis would not have been possible.

I would also like to thank my family for their love and support while I was working

on this thesis. My wife Lynda, sons Daniel and Dayan, and daughter Brionne, endured my

ordeal very well, and kept me going through the difficult times. It is to them that I

dedicate this thesis.

xiv

1. INTRODUCTION

A. BACKGROUND

Distributed networks of computers are being used increasingly to provide

computational power and services beyond the capabilities of a single computer system.

Distributed application programs specifically designed to utilize the distributed networks

of computers are gaining wide recognition as a powerful, flexible, and efficient method of

performing computation. Often, these distributed applications can be logically grouped to

allow more efficient and capable interaction. The process group paradigm has been shown

to be particularly well suited to organizing these distributed applications into a single

entity working toward a common goal. Examples of distributed applications that can

benefit from the use of process groups include multimedia teleconferencing, distributed

system management, remote monitoring and control systems, distributed reliable

databases, banking and brokerage services, distributed interactive simulation (DIS), as

well as a multitude of other applications. These process groups can be arranged in many

possible configurations to suit the needs of the particular application. Examples of various

process group configurations are shown in Figure 1.

1!:
Simple Nested Rehdmndt a -mihica clnt-Server
Group Groups Groups Groups Groups

Figure 1: Process Group Configurations

Process group oriented computation based on reliable communication primitives has

been shown to be particularly effective in a wide variety of environments [1, 2, 3, 4]. In

this paradigm, a group may correspond to a set of processes that must behave consistently

to provide a service or make a decision. Changes in the membership of the group may

occur due to the voluntary arrival and departure of members, or failures and recoveries

caused by the dynamic nature of the members. Therefore, a Membership Service (MS) to

manage the group membership is a fundamental building block for distributed applications

using the process group model.

To construct usable process groups, an MS must first overcome the group

membership problem (GMP): that is, providing consistent agreement on the membership

of the group at all members in spite of dynamic changes to the group [5]. This problem is

compounded by the asynchronous nature of the networks upon which the process groups

operate. Additionally, an MS must be scalable to support groups of any size and

distribution. The MS must be efficient, robust, and flexible to continue to provide services

to the client process groups under any circumstances. The MS must provide a uniform

interface to all applications, hiding the details of the process group management from the

users of the MS. An illustration of the logical representation of the MS is shown in Figure

2.

/ y Membership
"Service

@ 00

Figure 2: Membership Service and Application Process Groups

2

B. SCOPE AND ORGANIZATION

This thesis presents the design of a globally scalable, decentralized group membership

service to manage application process groups operating in a distributed, asynchronous

environment. The scope of this thesis covers an investigation into current group

membership protocols and membership services; the identification of the design

requirements for an MS; the design of a hierarchical, scalable MS that meets all of the

design goals; the detailed specification of the protocols which form the MS; and a partial

implementation of an MS running on a campus network.

The organization of this thesis is as follows. The first chapter provides an

introduction to the needs and requirements of distributed application process groups and

the services provided by a membership service. The second chapter describes the

necessary and usefll attributes of a full-featured MS, followed by a survey of current

group membership protocols and membership services. The third chapter provides a

detailed description of the hierarchical architecture and components of the MS. The

fourth chapter provides a detailed description of the five protocols required to implement

the MS, including algorithmic psuedo-code specifications of each. The fifth chapter

provides a proof of correctness for the MS protocols, ensuring that the MS meets the

stated design requirements. The sixth chapter includes an implementation of a set of

software utilities used by the MS and a partial implementation of the MS protocols. The

final chapter provides conclusions about the design of the MS and a discussion of future

work to be completed.

3

11. ATTRIBUTES OF A MEMBERSHIP SERVICE

In this chapter the desirable and necessary attributes that a general purpose MS must

possess are described. Design goals for an MS which has all of the required attributes are

outlined. The network and user interfaces for an MS are defined. Finally, a survey of

current group membership protocols and services is provided, showing the need for a

full-featured MS.

A. DEFINITIONS AND ASSUMPTIONS

Before describing the attributes, requirements, and features of an MS, the operating

environment must first be defined. Certain assumptions about the functioning of the

underlying network and the processes which comprise the MS and application groups

must be made. These assumptions are outlined below.

1. The Network

Few assumptions about the service provided by the underlying networks and

internetworks are made. These networks are assumed to be asynchronous and unreliable,

with only connectionless, "best effort" datagram delivery provided, with unbounded

delivery time. Messages may be lost, delayed, duplicated, garbled, or arrive out of order.

Furthermore, the networks may suffer partitions, leading to the interruption in

communications between end stations for variable periods of time. It is assumed that a

network multicast capability is provided, such as IP multicast [6, 7, 8]. This multicast

capability is assumed to provide rudimentary group management for the set of hosts which

share a common multicast address, including the creation and maintenance of a multicast

routing tree, and the detection and removal of processes which are not responding.

4

2. The Processes

Computer processes executing on distributed host computers throughout the

network are the entities which form the MS as well as the application process groups

which use the MS. It is assumed that the host computers and processes running on them

are unreliable and may fail at any time. The failure of the host computer or the process

running on the computer are indistinguishable from the perspective of the MS. It is

assumed that these failures will be fail-stop, or crashes [5, 9, 10, 11]. The computers or

processes will simply cease to function, with no malicious behavior.

The exchange of messages is the only way that distributed processes can learn of

each other's status. Due to the unreliable nature of the network described above, these

messages may never reach their destination, even though both sender and receiver are

functioning normally. For this reason, it is impossible for distributed processes to

distinguish between network partitions and the actual failure of other processes [5, 9, 10,

I I]. Therefore, the failure of another process can only be perceived, never known for

sure. Perceived failures are detected by the lack of response within a timeout period.

Although these perceived failures may be caused by a partition of the network or the

actual failure of the process, they will be treated as if the process had actually failed.

B. DESIRABLE ATTRIBUTES OF A MEMBERSHIP SERVICE

A membership service must provide a suite of services to manage group-oriented

applications. Some of these services are explicitly invoked, such as calls to create new

process groups, to have processes join or depart the process group, or to split or merge

the process group. Other services are implicitly and automatically provided by the MS,

such as detecting and processing member failures within the group, detecting and

processing partitions of the network, ensuring unique group names within a given scope

and providing consistency of ordering of group membership changes at all members. Still

other services provide information to applications upon request, such as group name, size,

5

membership, view number, and automatic notification of group membership changes. A

membership service also has certain inherent attributes, such as scalability, fault-tolerance,

efficiency and flexibility. Table I lists several desirable attributes that a general purpose

MS should posses to fully support application process groups.

TABLE 1: DESIRABLE ATTRIBUTES OF A MEMBERSHIP SERVICE

Attribute Interpretation Significance

A: Adaptive status Adjust timeouts based on local Minimize wrongly perceived
monitor conditions failures

H: Hierarchical Multilevel membership Exploit hierarchy in WANs,
protocol maintenance support very large groups

L: scaLability to Absence of centralized actions Support of large, extensively
large groups in the protocol overlapped groups

M: Multiple network Distribution over Novel applications
support heterogeneous networks

N: Non blocking Processing of continuous status Enhanced performance for
reconfiguration changes highly dynamic groups

0: topology-based Use of physical topology and Support of widely distributed
Optimization LAN features groups

P: network Merging after recovery with Increased applicability of
Partitioning required consistency Membership Service

R: Real-time Guaranteed detection and Support real-time applications
service processing latency for changes

S: multiple Simul- Quick update with weaker Multiple classes of service with
taneous changes consistency overhead proportional to

X: fleXible member- Availability of a range of quality
ship semantics consistency semantics

6

It should be noted that some of these desirable attributes listed in Table I conflict

with each other. For example, adjustment of timeouts based on local conditions will

violate the real-time aspect of the MS. Non-blocking reconfiguration and merging after

partitions conflict with providing strongly ordered membership change semantics. Thus, a

fully-featured MS must permit the membership service user (MSU) to choose which of

these conflicting desirable attributes will have priority. The MSU is given the option of

choosing various Quality of Service (QoS) selections to configure the MS to the exact

needs of the application.

C. MEMBERSHIP SERVICE DESIGN GOALS

In this section the design goals of a full-featured MS are described.

1. Scalability

The MS must be completely scalable. Application process groups spanning a

single local area network (LAN) or the worldwide Internet will see the same level of

service. To accomplish this goal, the membership information for all groups must be

maintained hierarchically. Information about process groups will be distributed

throughout the hierarchy, so that each node need only store and process information for

the application groups that it supports directly below it. In this manner, the MS nodes that

have no member processes for a particular application are in no way impacted by the

processing of membership changes for this application. Additionally, the MS will use a

decentralized, hierarchical decision making scheme, since a centralized scheme is not

scalable. The decisions about membership changes to application groups will be made by

a set of distributed nodes located in the hierarchy, which will then propagate the decision

to all process group members. By using the hierarchical nature of the MS, the number of

nodes involved in each membership change decision will be small. Additionally, the level

of the set of nodes in the hierarchy will be different for most process groups, since the

span of most groups will be different. Thus, different parts of the hierarchy can function

7

concurrently, processing membership change decisions for different groups at different

levels without affecting the operation of the other parts of the hierarchy.

2. Efficiency

The MS must be efficient in the use of computational and network resources in

order to be scalable. Using the decentralized hierarchical structure, each node in the

hierarchy need only process and store a small part of the information needed to support all

application process groups.

Since hosts computers attach to the internetwork through a LAN, access to the

MS must be present at the LAN level at all times, even if there are no groups present on a

particular LAN. This will drastically reduce the latency for creating new groups and

permits the use of special LAN-level features such as hardware multicast. To provide this

continual access, a daemon process should be running on each MS capable host computer,

and an MS node should be running on a dedicated server for the LAN. The daemon

process provides an interface between the MSU and the MS.

Multicast messages must be used to process all changes, since multicasting is an

extremely efficient method for multiple processes to communicate. Additionally, the use

of a hierarchy provides a natural funneling effect for multiple messages propagating to

higher levels in the hierarchy. This is a form of concast [12], reducing the load on the

network at each level in the hierarchy.

3. Resilience to Failures and Partitions

The MS must provide membership semantics that handle failures of members as

well as the underlying network. Failures of either members or the network must be

automatically detected and processed, reforming the group without any direct intervention

by the application processes or the MSU. The MS must use a decentralized protocol to

eliminate any single point of failure. Multiple simultaneous failures of member processes

8

must be detected and processed without blocking, usually by "batching" the failures into a

single change to the membership.

4. Levels of Consistency

As identified in other group membership protocols [1i, 13, 14], there are various

possible levels of consistency in the ordering of changes to the membership view at

members of a process group. Strong consistency guarantees that all members see exactly

the same changes to the group membership in exactly the same order. Weak consistency

guarantees that all group members will eventually reach the same view of the group

membership, but may hold disparate views for some period of time. Strong consistency

requires added complexity and overhead to ensure that all members have the same

ordering of membership changes, while weak consistency relaxes the requirements

required by strong consistency, and therefore is less complex. Strong consistency must

block all changes to the membership until the current change finishes, while weak

consistency may process concurrent changes. Thus, weak consistency generally has a

reduced latency over strong consistency. The MS must provide flexible membership

semantics for the application groups supported, allowing the MSU to select the level of

consistency needed for the particular application.

5. Membership and Name Scope Control

The MS must provide a means to limit the extent of individual application

groups. Without such a limit, all application groups could potentially use the whole MS

hierarchy, even if only a small part of the hierarchy was actually needed, creating a

bottleneck at the highest level in the hierarchy. The use of "scope control" parameters

limits the maximum span of an application group in the MS hierarchy to the referenced

level. Membership scope control limits the extent of group name searches whenever an

application group is referenced, such as a request to create a new group or join an existing

group. Name scope control limits the maximum span in the MS hierarchy which an

9

application group can cover. This parameter can be used when the application group is

created, and specifies the highest level in the MS hierarchy at which the group name

should be registered. References to an application group outside of the name scope will

not find the application group, and will propagate to the highest level in the MS hierarchy

unless limited by the membership scope control parameter.

6. Selectable Quality of Service

The MS must permit user selection of the conflicting desirable attributes

identified in Table 1. Some of the QoS selections which must be supported include: the

level of consistency in ordering of membership changes, methods of resolving partitions in

application groups, adaptive status monitor conditions to adjust the MS for local

conditions, designation of a limited scope for the application group, and user configuration

of the MS hierarchy for special purpose applications. An MSU must be able to select the

desired level of service by specifying certain parameters related to the QoS. These

parameters specify how application group partitions are handled, how the scope of a

group name is controlled, how the membership change information is ordered, the setting

of the failure detection timeouts, and the aggregation of multiple simultaneous changes.

D. MEMBERSHIP SERVICE INTERFACES

In this section the relation of the MS protocols is defined with respect to the Internet

Protocol (IP) protocol stack, which is the de-facto standard for internetworking

communications. Additionally, the application user's interface and the MS system

configuration interface are described.

I. Network Protocol Layers

Figure 3 illustrates the relation of the MS protocols to the Transmission Control

Protocol/ Internet Protocol (TCP/IP) suite of internetworking protocols in the layer

below, and the application programs and upper-layer protocol modules in the layer above,

10

using the common layering model of depicting the hierarchical dependencies of network

protocols.

Application and Upper-Layer
Protocol Modules

Membership Service Interface

Member Interface (MI)

Membership Service mserver
Module

Transport Service Interface

P Multicast multicastSMUDP emulator

Transport Module

EP Service Interface

IP Module ICMP IGMP

Figure 3: Protocol Layers

2. User Interface

The application user's interface to the MS is provided through explicit system

calls to alter the membership or provide information about application process groups.

The MS is implicitly called to change the membership of application groups any time a

process failure or network partition occur. The following lists explain these system calls

and events in more detail.

11

a. Informational

1. Group View ("group")

Provide the current group view number maintained by the MS. Used by

application processes to guarantee all members have the most recent view of the group

membership.

2. Group Statistics ("group")

Provide current group view number and membership list maintained by

the MS.

b. Explicit Memberskip System Calls

1. Join ("group", membershipscope, name_scope)

Request by a new member process to join a group which may or may

not already exist. If the group does not presently exist, a new group is formed with only

this member. If the group does exist within the requested scope, the MS processes the

change and informs the application group of the addition. The membershipscope field is

used to specify the highest level in the MS hierarchy which should be searched for the

application group name during a join, thus limiting the time required to determine if the

group exists, and the impact on other groups. The name_scope field is used during the

creation of the process group to specify the maximum span the application group will ever

cover in the MS hierarchy. This field limits the extent of the search req.uired whenever a

group is referenced.

2. Leave ("group", gid, membershipscope)

Request by member with group identity number "gid" to leave a group.

The departing member is able to leave immediately, without waiting for a response from

the MS.

3. Merge ("group ", "group2")

12

Request by member of group I to merge group I and group2. Upon

successful completion, the union of the two groups will be formed, using group name
"group I", with a new group view. This request is the general form of the join request.

4. Split ("group I", "group2", g2MemberList)

Request by a member of group I to remove one or members of group 1,

listed in the parameter g2MemberList, and form a new group2 with these members. This

request is the general form of the leave request

c Implicit Membership Altering Events

1. Failures and Partitions

The MS will automatically handle perceived failures of group members,

up to and including all members. Automatic notification of member failures is provided to

the application group.

3. System Configuration Interface

The system calls used to configure the MS hierarchy are virtually the same as

those used by application groups, with the exception of calls to make certain nodes parent

nodes of others, thus creating the hierarchy. The configuration of the MS is performed by

a system administrator, using individual command line system calls or an MS configuration

program called MS_mgr.

E. CURRENT PROTOCOLS

A summary of existing membership protocols is provided in Table 2. The category

headings are the same desirable attributes of a membership listed in Table 1. Finally, a

listing of the design goals and desirable attributes contained in the MS presented in this

thesis is shown in Table 3 for comparison.

Unlike any known group membership protocol, the group membership service

described in this thesis is totally scalable, handling process groups spanning a single LAN

to groups spanning the entire global Internet equally well. It provides for nested and

13

TABLE 2: A SUMMARY OF EXISTING MEMBERSHIP PROTOCOLS
Index to Coluns: see Table 1.

Index to Entries: V': Supported, X Not supported,
E : Support possible with extemions, - : unknown

Protocol Required Principle A O N 0 P R S X
Network Feature

Asynchronous Environment:
Chang etal. unreliable token site X X X X X X X X v" X
1151 message

Bruso message versionnumbers, E X X X X X X X E X
1161 diffusion stable storage I
El Abbadi et al. unreliable virtual partitions E -- V " X E • X V" X
1171 message
Verissimo et al. broadcast two-phase accept X X X X X X X " E X
1181 LAN
Moseretal. ordered, ordinal numbers X X X X X E X X X X
1191 reliable
Riccardi et al. unreliable reconfiguration E E E E / E X X X X
191 message manager
Mishra et al. ordered, Psync & X X E E X E - X1 E
1201 reliable conversations
Auerbach et al. multicast multicast X E X X-- X ' X V X
1211 hardware sequences
Jahanian et al. unreliable crown prince E E E E -- X E X V
1131 message I
Golding et al. unreliable time-stamped E V V V " X V X V X
1221 message anti-entropy

Synchronous Environment:
Cristian bounded delay attendance X X X XV X X V E X
151 lists
Ezhilchelvan bounded delay time-domain X X X X V X X V V X
et al. 1231 multiplexing
Kimetal. TDMAbus reception X X X X " X X V., V" X
1241 1 history

Rodrigues et al. exposed LAN transmit-with- X X X X 1 X X V V X
1251 interface response

14

overlapping groups, as well as multiple groups residing on a single LAN. It also provides

various Quality of Service selections which permit individual groups to be configured for

an optimal balance between high quality with strong consistency semantics for group

membership, with the associated complexity and latency, and weaker consistency

semantics with reduced complexity and latency.

TABLE 3: ATTRIBUTES OF THE MEMBERSHIP SERVICE

Required Network Principle Feature A H L M N 0 P R S X
Properties

Unreliable Decentralized 7 V• v V -• X V. Ve
messages protocol based on
Bounded delay ordered membership X 7 v Ij • x X " 7
message delivery

15

Ill. MEMBERSHIP SERVICE ARCHITECTURE

At the foundation of the scalable and efficient Membership Service lies the

architectural structure. The key to a scalable Membership Service is a decentralized,

hierarchical architecture. The Membership Service uses a hierarchical architecture

designed to follow the pre-existing physical topology of the subnetworks, networks, and

internetworks upon which the distributed application process groups that the Membership

Service supports will be running. This chapter describes the structure and composition of

the physical hierarchy of the MS and how this architecture supports application process

groups.

A. PHYSICAL HIERARCHY

The relevance of the architecture of the MS to the scalability of the MS is obvious

when the global scale is considered. There are presently over 120 million computers and I

million LANs world-wide, connected by bridges and routers to form global internetworks.

A centralized MS would require the central node to interact directly with all of these

computers distributed throughout the world, clearly an impossibility. By forming a logical

hierarchy, the interaction required by each node in the hierarchical tree is limited to those

nodes directly above and below, providing a uniform load for any node in the hierarchy.

The significance of the hierarchical structure is illustrated in Figure 4, where an n-ary

hierarchical tree is formed with eight levels of ten nodes each, providing support for

virtually all of the world's computers at the leaf level. With this hierarchy it is possible for

any leaf computer to communicate with the root level of the tree with only six

intermediate relays by nodes in the tree. If these intermediate nodes are logically

connected in a manner which closely follows their physical connectivity, the connection

from leaf to root level could require as few as six physical communication links.

16

10 10
100 10 10

1,000 10 10
10,ooo 10 10 to Slee

100,000 10 10

Io'oo'oo 10 1-10 Million LANs 10

100,000000 10 100 Million+ Computers 1

Figure 4: Global Hierarchy

The other significant aspect of the hierarchical structure is that a node at each level of

the tree only need interface with the parent node above and the children nodes below. In

Figure 4, each node communicates directly with only ten children nodes and one parent

node. This is in comparison to the interaction in a centralized MS, where a single manager

node must communicate directly with all other nodes in the MS - potentially millions of

nodes managed by a single manager.

1. Mservers and Member Interfaces

The MS is comprised of two primary entities: Membership Servers (mservers)

and Member Interfaces (MI). The mservers are the heart of the MS, forming the nodes of

the hierarchy. The mservers are processes running on routers or host computers

distributed throughout the internetwork. The mservers provide connectivity, routing, and

record-keeping functions in a distributed, decentralized manner for the MS. The mservers

are primarily responsible for processing changes and providing information to the

members of both the physical hierarchy as well as the application process groups using the

MS. Typically, one mserver process runs on each router or name server in the network,

and one mserver runs on a dedicated host or the designated router for each connected

LAN. Application group processes interfaice with the MS through an NH process running

17

on each host computer. Each MI accepts requests for changes to or information about

application groups from the individual application member processes running on the

particular host computer. The MI then reliably relays these requests to the LAN mserver

for submission to the MS. The MI receives responses from the LAN mserver and reliably

propagates these responses to the application member processes that it supports. Each MI

is able to support numerous application groups and numerous individual member

processes from each application group, limited only by the available resources of the

individual host computer.

2. Organization and Configuration

a Logical Hierarchy

The physical hierarchy of the MS is formed with mserver nodes logically

connected together to form an n-wy tree. The MIs are located at the leaf level of the

physical tree, at the host computer level, providing an immediate interface for the

application group processes running on the host computer. Figure 5 illustrates an example

logical hierarchy of mservers, Mls, and application group processes. The architecture

shown is a representative configuration for a small area encompassing a single institution,

such as a campus or business. In this case, the architecture shown is the configuration of

the Naval Postgraduate School (NPS), where the MS is under development. In Figure 5,

the set of mservers labeled NPS are servers at the root level, attached to the campus

backbone, representing the whole campus. At the next lower level are sets of mservers

representing individual buildings at the campus, labeled Spanagel, Root, and Ingersoll.

Each of the mservers in these sets are servers on LANs located in the buildings. At the

next lower level are the MIs running on individual host computers on each LAN. The

LANs are labeled as ECE), ECE2, SPI, and so on. Below the MIs are the application

group processes running on each host computer. In this example, there are four

application groups shown. Some MIs are shown supporting more than one group, each

18

with one or more members per host, while other Mls have no application groups to

support. The MI process remains resident on the host computer even if no applications

are running to provide quick access to the MS.

NPSsoo

SPANX '/ R TOL

* aurwr ppficUE es %... Appdicati&w I
! M• •t •... • '

*MLlwul per hat4

Figure 5: Logical MS Hierarchy

b. Physical Topoloay

The logical hierarchy shown in Figure 5 corresponds to the physical

topology of networks and computers shown in Figure 6. In this illustration, each

successively larger grouping of computers and networks is indicated by dotted lines and

the associated name, corresponding to the sets of MI or mservers shown at each level in

Figure 5.

19

NPS

SPANA GEL INGERSOLL
SPI SP2 INI INM INS

ROOT
ECEI ECE2 ROI R02 ROS

@0 Amn M5Ube
00 Processes Proces
@0 Process

Figure 6: Physical MS Hierarchy

c. Semi-static Configuration

The mservers and MIs of the MS are manually configured into the desired

physical hierarchy by a local system administrator or cognizant authority. This

configuration is expected to be semi-static, normally changing only when additions and

deletions to the networks maintained by the administrator are made. The system

20

administrator will assign appropriate names for each set of mservers at each level,

corresponding to the multicast group which connects the set of mservers. The assignment

of a set name and multicast address are accomplished when the set of mservers are created

and joined together, using software calls to the MS.

di Failures, Partitions, and Dynamic Reformation

Although the mserver and MI configuration is not expected to change very

often, there is still a possibility of the failure of the mserver or MI processes, the host

computers or servers upon which they are running, or partitions in the network. These

failures and partitions lead to a dynamic reconfiguration of the physical structure of the

MS, with the surviving mservers and MIs automatically reforming into partitioned sets.

Since any failure or perceived failure of an mserver is actually a virtual partition of the

network, all failures and partitions will lead to the creation of one or more partitioned

subsets of the original set of mservers. Each partitioned subset of mservers will

correspond to that subtree of the physical hierarchy on one "side" of the partition; that is,

all of the mservers which are still able to communicate over the non-partitioned network.

Each reformed physical hierarchy of the MS will continue to function, providing service to

all application process groups with members still existing in the partition. The application

process groups which span the partitioned network will also experience a partition in their

membership. This condition will continue until the physical network partition is repaired,

at which time the physical hierarchy of mservers will either manually or automatically be

reformed to the original configuration. Once the physical hierarchy is restored, the

surviving application groups will also be reformed, if this is the QoS related to partition

resolution chosen by the application user at start up time.

In addition to the overall hierarchical structure of the MS, each set of

mservers in the physical hierarchy is also organized into a monitoring-set and

change-processing core-set. The LAN mservers also are responsible for monitoring the

21

status of all MIs on the LAN. These organizations of mservers will be explained in the

next sections.

3. Monitoring Set

a. Defiition aad Purpose

The first criterion for an MS to be dynamically reconfigurable is to be able to

detect failures of the component entities. To accomplish this, each set of mservers in the

physical hierarchy is organized into a monitoring-set. The purpose of this monitoring-set

is to detect and announce the failure of any failed or perceived failed mserver in the set.

The detection method used is pairwise, peer-to-peer monitoring of the mservers in the

monitoring-set. Each mserver is responsible for monitoring one other mserver in the set,

and in turn is monitored by one other mserver. The monitoring is accomplished by the

monitor sending periodic Query messages to the monitored mserver, which then responds

with a Reply message, indicating normal status.

b. Structure

An illustration of a monitoring-set is shown in Figure 7. The pairs of

monitoring and monitored mservers are determined by the order in which the mservers

join the monitoring-set. Each newly joining mserver is connected into the pair-wise

Figure 7: Monitoring-set of Mservers

22

monitoring sequence as the mserver monitored by the highest rank (oldest) mserver in the

set, and will begin monitoring the previously lowest rank (youngest) mserver.

c. Failure Detection

As with nearly every message sent within the MS, the monitor will set a

timer upon sending the Query message. If a Reply message is not received before the

timer expires, the monitor will suspect the monitored mserver of failure. One or more

retries will be conducted, and if the monitored mserver does not respond in this time, it

"will be declared failed by the monitor, which will then announce the failure to all other

mservers in the set The mserver detected failed may have actually failed, or may be

unable to communicate with the monitor; in either case, it will be considered failed by all

mservers which receive the monitor's announcement

4. Change-proceming Core-set

A second organization applied to the set of mservers at each level in the

hierarchy is that of a change-processing core-set. This set of mservers is responsible for

processing all membership change requests submitted by the application process groups

that it supports, as well as enacting changes in the physical hierarchy. The change

processing involves reaching a consistent agreement amongst all core-set mservers about

the change being submitted, then to reliably propagate this change back to the application

process members, who are then guaranteed to have a consistent view of the changed

application group membership.

b. Purpose

This organization is termed a core-set because it is the small set of mservers

at that "top" level for the group in the physical hierarchy which connects the particular

application process group supported. For example, the set of mservers labeled NPS in

Figure 5 serve as the core-set for all four application groups, since each application group

23

has members distributed on all LANs. The sets of mservers at lower levels in the

hierarchy will not process these application membership changes, but will submit them to

the core-set, then relay the results back to the Mls. In this manner, the hierarchical

structure of the MS is used to reduce the number of mservers that cooperate to process a

membership change for an application group to those in the core-set for that group. This

organization leads to very efficient and fast processing of membership changes for groups

of any size and distribution, since only the core-set of mservers will be processing the

change. It also provides the necessary scalability for the MS, since application process

groups of any size or distribution will have a small core-set of mservers processing the

membership changes, and thus will experience nearly the same small processing time. The

primary difference in membership change processing times for different application groups

will be caused by the level of the core-set in the physical hierarchy. A core-set at a higher

level will have more intermediate relaying mservers between it and the application member

processes, thus creating a longer transmission path,

parent

Figure 8: Change-processing Core-set of Mservers

24

c. Str,-cture

An illustration of a core-set of mservers is shown in Figure 8 The mservers

in the core-set are connected in a multicast tree, using a common multicast group to

multicast a change message from one mserver to all others at once. For each membership

change request submitted to the core-set, a coordinator is chosen. The criteria for

selecting the coordinator depends on the particular type of change and how it was

submitted to or detected by the core-set. The fact that the coordinator is not a fixed

member of the core-set, but instead varies from change to change, is a powerful feature of

the MS. Since the coordinator does not exist as such unless a change is actively being

processed, there is no need to ensure an operational coordinator exists when no change is

being processed, thus greatly reducing the core-set overhead.

Each set of mservers in the physical hierarchy is configured as a core-set.

This serves the dual purpose of having a core-set readily available for use by application

groups at any level in the hierarchy, and allowing each set of mservers to process

membership changes among the inservers of the core-set locally. Thus, each level of the

MS hierarchy is responsible for managing the mservers at that level only. Changes to the

membership of the core-set are processed in exactly the same manner as membership

changes submitted by application groups, with the exception that these changes directly

affect the core-set membership and are not propagated outside of the core-set.

Membership changes to the core-set are generated by failure detections from within the

core-set or by change requests sent to the core-set when manual configuration of the MS

physical hierarchy is conducted by the system administrator.

d Change-processing Sequence

The basic change-processing sequence uses a modified form of the three-way

handshake often seen in unreliable networks for reliable message delivery. The

coordinator initiates the change processing with a multicast to all core-set mservers,

25

collects acknowledgment (ACK) messages from all, then multicasts a final message for all

to commit the change. Timeouts and retries are used by mservers waiting to receive ACKs

or Commit messages from other mservers to ensure that continual progress is made

toward completion of the change. As with the monitoring scheme, if the correct reply is

not received from an mserver after the timeout period and all successive retries, then that

mserver is declared failed and the failure is announced to all other mservers in the core-set.

e. Multicasts and Failure Detection

The use of timeouts and retries on change-processing messages creates a

secondary but essential method of detecting mserver failures. Since mserver monitoring

uses unicast messages and change-processing uses multicasts, it is possible that a network

partition could occur that affected only multicast message delivery between one or more

mservers. The inability of mservers to communicate all necessary data creates a virtual

partition between the mservers. Without the use of this secondary detection method, it is

possible that one or more mservers could be functioning perfectly well, sending the

required monitoring messages, but unable to respond to change-processing messages, thus

creating a deadlock situation. The timeout and retries on change-processing messages

ensures that an mserver unable to communicate will be detected failed, and the remaining

mservers will be able to complete the change in a timely manner. In the event of a

coordinator failure during the change processing, a distributed election is conducted and a

new coordinator is elected to continue the original change.

5. LAN Mserver Monitoring

Due to the high bandwidth, low latency, hardware multicast capability, and

limited number of Mls to monitor, the mserver representing each LAN uses a simple

polling scheme to conduct status monitoring of the Mls and host computers on the LAN.

Each MI on the LAN is successively polled with a Query message by the LAN mserver.

The MI responds with a Reply message indicating normal status. Timeouts and retries are

26

used to detect a non-responding MI, declare that MI failed, and announce the failure. A

depiction of the LAN mserver monitoring scheme is shown in Figure 9.

LAN

host computers,
Member Interfaces,

& applkation
processes

Figure 9: LAN Mserver Monitoring of Mls

6. Hierarchical Structure

a Collapsing the Tree

The final organization of mservers and I s involves forming the

monitoring-sets and core-sets of mservers into the physical hierarchical structure used by

the IS, with the I s at the leaf level. All core-sets are also monitoring-sets, thus

providing the failure detection needed by a core-set to manage the mserver membership

locally. As shown in Figure 5, each mserver in the hierarchy has either a set of children

mservers or I s. All mservers and I s also have a parent mserver, except the mservers

at the highest level of the hierarchy. To create this physical structure, the logical hierarchy

of Figure 5 is "collapsed", so that each parent mserver becomes a member of the core-set

of children mservers below it, as well as a member of the core-set of peer mservers. Thus,

each mserver above the lowest level in the hierarchy has a dual membership in the

"child-set" as well as the original core-set of mservers. Figure 10 illustrates this structure.

27

ECE
IUSINi

SPNA NPS GESL

I MI/host

R02

Figure 10: "Collapsed" MS Architecture

b. Parent Mserves

A comparison of the logical MS hierarchy shown in Figure 5 with the

physical MS hierarchy shown in Figure 10 shows the same sets of mservers and MIs.

However, the sets can now be identified as change-processing core-sets, linked to the level

above by the dual membership of the parent mserver. Having the parent mserver as a

member of the child-set has two primary advantages. First, the parent mserver is part of

the child monitoring-set; thus, the child-set will immediately learn of the failure of the

parent mserver by monitoring. Second, the parent mserver takes part in all change

processing conducted by the child-set; therefore, it will learn of any changes in the

membership of the child-set directly. Together, these two points ensure that "vertical

monitoring" is conducted in the hierarchy. This provides the means to ensure that a failure

or partition between levels in the MS hierarchy will be detected, allowing the MS to

reform as necessary.

28

B. APPLICATION GROUPS

Support for application process groups is the primary reason for the MS. The MS is

responsible for managing the membership of the application process groups and providing

services to the application process groups. The following sections describe how the MS

accomplishes this.

1. Application Groups and the Physical Hierarchy

a. Scalabi"ity

The application groups consist of processes running on host computers

distributed throughout the networks supported by the MS. As shown in Figure 2, the MS

provides the necessary services to make an application consisting of numerous distributed

processes to appear as a unified application running at a single site. Because of the

scalability of the underlying MS architecture, the application process groups are

completely scalable in number and distribution of processes, with the end result being

complete transparency of the distributed nature of the MS to the service users.

& Consistency

The primary service that the MS provides application groups is a consistent

view of the group membership at all members, as well as a consistent ordering of changes

to the membership of the group at all members. These consistency guarantees ensure that

a process group member either acquires the same consistent view as all other members of

the group eventually, or is excluded from the membership of the group. The term
"evemntually" refers to the asynchronous nature of the environment, leading to delays at

some sites. The MS allows for reasonable delays, thus ensuring that all surviving

processes will receive the revised group view. Using this guarantee of consistent

membership at all processes, the application can safely make certain assumptions about the

member processes. The application can expect that processes with the same group view

29

number have seen the same sequence of membership changes, and currently have the same

view of the membership of the group. Using this knowledge, the application can decide to

accept or reject messages from other application processes depending on the included

group view number. The guarantee of consistent membership can be used as the

foundation upon which to build many distributed applications.

The MS provides consistent ordering of membership changes to application

groups by ensuring that only one change is ever processed at a time in the core-set of that

applic?4' ,roup, and that all active member processes eventually receive this change.

The sei• -, -ed change is committed by all core-set mservers, then reliably propagated to the

Mls, and finally, to the distributed application member processes. The MS provides the

guarantee that an application member process either receives each revised group view or is

detected as failed, and excluded from the group. In this manner, all surviving application

member processes are guaranteed to have exactly the same ordering of membership

changes.

c. Naming

The MS manages the names of all application groups using the MS.

Application group names are guaranteed unique within a predetermined scope. When an

application group is created, the software call from the application to the MS includes as a

parameter a level in the MS physical hierarchy, under which the application group name

will be guaranteed unique. This name-scope parameter is either the actual name of the

core-set or a level number above the MI level in the physical hierarchy. For example, to

guarantee an application group name of "application " as unique under the scope of the

NPS core-set from Figure 5, the name NPS or the level number 2 would be used as the

name-scope parameter. The name-scope level must be at or above the core-set level for

the application.

With the creation of each new application group, the name-scope parameter

is checked at each level in the mserver hierarchy up to and including the name-scope level.

30

If the name already exists, the creation of the new group is refused, and an error code is

returned to the calling application. If the name is not found, then it is registered at the

name-scope level of mservers and at each level in the hierarchical tree of the application,

and a successful group creation is reported to the calling application. When new

application member processes at distributed locations wish to join an existing application

group, a join request is submitted via the resident MI, then propagated up the hierarchy

until either an mserver is located with the application name stored or the highest level in

the physical hierarchy is reached and the application name is not located. If the desired

application group name is located, the new member is joined into the application group

through the normal change-processing sequence, and a successful join is reported back to

the requesting process. If the name is not located, an unsuccessful join attempt is reported

back. Through judicious use of the name-scope parameter, application names may be

used freely with little concern about duplicate name usage.

d Membership Scope Control

An additional feature provided by the MS is the ability for an application to

decide at what level in the MS physical hierarchy to limit the scope of the application

group. By providing a membership-scope parameter with the creation call for a new

application group, the application guarantees that the span of the application's

membership will not exceed the given core-set level in the physical hierarchy. In return,

the MS is able to provide more efficient service by limiting the scope of application group

name searches to the membership-scope level and below. Instead of propagating every

unsuccessful application group name search to the highest level of the MS hierarchy, the

name search will cease at the membership-scope level. Without use of the

membership-scope, it might be possible for a bottleneck to form at the "top" of the MS

hierarchy.

31

2. Member Interfaces

a. PurpoDse

As previously described, the Mls provide the interface between application

group member processes and the MS physical hierarchy. They accept application

membership change and information requests from application processes and submit these

changes to the mserver hierarchy for processing. When the change or information data is

returned, the MN passes the data to the requesting member processes.

As shown in Figure 9, each MI is running on an individual host computer. Each

MI is capable of interfacing multiple application groups, each with multiple members, with

the LAN mserver and the MS. Each MI maintains a list of all application groups it is

managing as well as all member processes from these groups running on the host

computer. Thus, the membership information for each application group is maintained in a

decentralized, scalable manner. When an application member process needs to

communicate with another application member process on a different host, it submits a

request for addressing information to the MI. The MI relays this information request to

the MS, which obtains the desired information from the MI managing the desired member

process, and relays the information back to the requesting MI and application member

process.

b. Application Member Process Monitoing

The MIs monitor the application member processes in exactly the same

manner that the LAN mserver monitors the MIs on the LAN: using polling. In the same

manner, non-responding application processes are detected failed, the failure is

announced, then submitted to the MS for an application group membership change.

32

3. Application Group Change Processing

As previously discussed, application group change processing begins with the

submission of a change request to the host MI. This request is relayed to the core-set of

the application, which conducts the mserver change-processing procedure, resulting in all

core-set mservers committing the change. Each core-set mserver then reliably relays the

change directive down the hierarchy to the MI, and then to the requesting application

process. When the change is submitted by the MI, a timer is set to ensure a timely

response to the change. The MI waits for the returning Direct message from the LAN

mserver. If the timer expires before receiving the Direct message, a query message is sent

to the LAN mserver requesting the status of the change submitted. The LAN mserver will

respond with a Wait message if the change is still being processed, causing the MI to wait

for a period before querying the mserver again If the MI completes all timeouts and

retries and still has not received a reply from the LAN mserver, it detects the LAN

mserver failed and announces the failure. In the same manner, each intermediate mserver

also sets a timer for a response from the next higher level mserver. A non-response leads

to a partition in the physical hierarchy. To ensure reliable transmission from the core-set

to the application process, each intermediate mserver and MI send an ACK message back

to the mserver above upon receipt of the Direct message. Timeouts and retries are again

used to detect failures and partitions. At the end of the application change processing

sequence, every application member process is guaranteed to have received the change

message or to have been detected as failed.

33

IV. MEMBERSHIP SERVICE PROTOCOLS

The previous chapter described the component entities of the MS: the mservers and

Mls. The organization of the mservers and MI into the MS physical hierarchy was

described in detail, as well as their basic functionality. This chapter describes in detail the

protocols used by the mservers and MI to implement the MS, and the general format of

messages used to exchange membership information between mservers and MI.

1. General Message Types

The general message types used by the MS and descriptions of each are listed in

Table 4. There are three general classifications of messages: Monitoring, Initiate, and

Change Processing. Many of these messages are used for more than one purpose, such as

processing changes to the physical hierarchy of mservers and MI as well as changes to

application process groups. The Monitoring messages are used by mserver in the

monitoring-set to conduct pairwise peer-to-peer monitoring, by the LAN mserver to

monitor the MIs on the LAN, and by the MI to monitor application process members.

The type of monitoring being conducted is determined by the members involved and the

context of the message used. The Initiate category of messages are used to initiate a

change for either the physical hierarchy or an application process. The Join message is

used to join a new mserver to an existing core-set of mservers, create a new core-set with

one mserver, to join a new application member process to an existing group, or to create a

new application group. The Leave message allows a voluntary departure by an mserver

from a core-set or an application process from the group. The Spllt and Merge message

types are the general form of Join and Leave, allowing multiple mservers or application

processes to join or leave a core-set or application group, respectively. The Addjxarent

and Del_parent message types are used by an existing core-set to adopt or remove a

34

TABLE 4: MS GENERAL MESSAGE TYPES

Message Type Description

Monitoring Used by mservers and MI to determine status of others

Query Query status of another mserver or MI

Reply Reply to Query

Initiate Initiate a physical or application group change

Join Mserver join a core-set or application process join a group

Leave Mserver leave a core-set or application process leave a group

Split Split from core-set or group to form a new set or group

Merge Merge separate core-sets or application groups into one

Addfparent Core-set add an mserver as parent

Del_parent Core-set remove the existing parent mserver

Fail Mserver, MI, or application member process detected failed

CoordFail Mserver coordinator of current change detected failed

Submit MI submit change to core-set (same types as Initiate)

Direct Core-set change directive to MIs (same types as Initiate)

Process Change Used to process a physical or application group change

ACK Acknowledge Initiate or Direct messages

Wait Wait to begin processing change or for next message in change

('ommit Commit the current change

Msg _Query Query mserver for status of next message expected in change

lnit Initial parameters message from coordinator to joining mserver

parent mserver. This action is the primary function used to create the hierarchy of

core-sets. The Fail message type is used to announce the failure of an mserver or

application member process and initiate the change to remove the failed member from the

core-set or application group. The CoordFail message is used to announce the failure of

the coordinator mserver for the current change being processed. This message will

prompt the election of a new coordinator, which will complete the original change. The

35

third category of general message types are those actually used to process membership

changes to a core-set of mservers or an application group. The ACK message is a general

acknowledgment message used to indicate successful reception of an Initiate or Direct

message. The Wait message is used by the coordinator of the current change or by an

parent
mserver

Submit ueer Direc~t
application plm p physical hierarchy application group

change and information change and Information change and information
messges essges messages

peer mserver peer mserver
emseorie monitoring

mesnages Reply , Reply messages
core-aet ore-et

processing 0 processing

messages - messages

mserver
physical hierarchy

change and Information
Submit Reply message$ Query lie,

application g•op MI Nil application group
change and information monitoring monitoring change and information

messages essae .. /.\ messages messages

child-set mservers or Mls

Figure 11: Mserver Messages

mserver propagating a Submit message to inform querying mservers that a there is a delay

in completing the current change and that they should wait for a period for the next

expected message. It is also used by a core-set mserver to inform another mserver

attempting to initiate a new change that the current change is not yet completed, and the

36

new coordinator should wait a period before beginning the next change. The Commit

message is sent by the coordinator to inform all core-set mservers that it is safe to commit

the current change as the new group view and to propagate this view to application

processes as needed. The MsgQuery message is used by an mserver or MI to query

LAN
inservere

Subuink Reply Quary D~irect
appliation group MI MI application group

change and infornuaton monitorieg omontoring change and informaton

l " I

Reply application group Query
mIg change and information huMI
mokrig messages monuornag

mesages man

I application group member process

Figure 12: Member Interface (MI) Messages

another mserver about the status of the message for the current change expected from the

queried mserver. The mserver receiving the MsgQuery will usually respond with a Wait

message or the expected message, if it is determined that the message was lost. The

Submit message is used by an MI submitting an application group change to the LAN

mserver, then by each mserver in the hierarchy to propagate the change request to the

application core-set. The Submit is in effect a remote Initiate message, and has the same

37

category of types as an Initiate message. The Direct message is used by the core-set

mserver with application members at their leaf level to propagate the committed

application change down the hierarchy to the MIs representing the application group, and

also has the same category of message types as an Initiate message. Figure 1 I illustrates

the messages sent to and received by an mserver, while Figure 12 illustrates the messages

sent to and received by an MI.

vers checksumr

group_name

authentication
group view I sender -idSi d

msit type i" subject jid I\ d I' \ '
subject addr I rank
subject rank nezt* next*--
exclude list 0.-

excli list ien subj list len . Sid
subject list drar

data lenrakan
data nxo e

Figure 13: Membership Service General Message Format

2. General Message Format

The general message format used by the MS is shown in Figure 13. An

explanation of the meaning of each message field is provided in Table 5. The exclude and

subject lists shown in Figure 13 are queues maintained by each mserver, which are

included with certain types of messages. Each element of these lists contains the minimal

amount of information to uniquely identify an mserver or application process, when

38

TABLE 5: MS GENERAL MESSAGE FIELDS

SMessage Field Description

vers MS version number

checksum used for message error detection

groupname core-set or application group name

authentication used for group security

groupview current core-set or application group view number
msgtype message type
sendergid message sender's grout identification (gid) number

subject gid message subject's group identification (gid) number

subject rank seniority based rank of mserver or application member process

exclude-list list of mservers to be excluded from core-set due to failure

excl list len number of mservers in exclude-list

subject list list of subject. for a Merge or Split, or failed mservers or members

subjlist fen number of mservers or members in subjectilist

data general purpose data field

data-len length of data included with message

combined with the information about the core-set or application group contained in the

message. The lists are used to communicate information about sets of mservers or

application processes. The exclude list serves a dual purpose: to ensure that failed

mservers are not included in the communications of the core-set, and to inform other

core-set mservers of mservers perceived failed before they are actually removed from the

core-set. Bt. "quse the network multicast capability assumed by the MS is unable to

dynamically tailor the receivership of each multicast message, a filter mechanism must be

used to ensure that unintended mservers do not receive the current message. An mserver

which is detected as failed is added to the exclude list of the current message sent by the

detecting mserver. Mservers receiving this message will cease all communications with

39

the excluded mserver. If an mserver is still functioning and receives this message with

itself listed in the exclude list it will immediately cease all communications with all

mservers in the core-set, with the possible exception of other mservers in the exclude list,

with which it will attempt to reform a new core-set. This method of "piggy-backing" the

detected failure of mservers with another message is referred to as "gossip" [9].

3. General State of Mservers and Mls

The MS maintains information about the physical hierarchy and application

groups in a decentralized manner. Individual mservers and MIs need only maintain the

information necessary to perform their required functions. This decentralized storage of

MS information is essential to the scalability of the MS.

a. Mservers

For an mserver, the information stored about the physical hierarchy includes

the gids, ranks, and addresses of other mservers in the core-set and child-set of mservers

of which it is a part; the monitor, and monitored mservers for each of these sets of

mservers; the parent mserver of the core-set; information about the current and previous

changes processed; and queues of mservers detected failed , received change requests, and

excluded mservers. Each mserver also maintains information about the application groups

that it supports. This information includes a list of application groups supported by the

mserver; which children mservers are in the application group's hierarchy; and whether the

mserver level is the core-set, memberhsip-scope, or name-scope level of the application.

b. Mls

Each MI must store information about the application groups and their

members that it is supporting on the host computer, as well as the address of the parent

mserver Any other required information is obtained through the MS hierarchy.

40

4. Physical and Application Group Protocols

To perform the various functions described, mservers and MI use five primary

protocols. These protocols are: the physical monitoring protocol, the application group

monitoring protocol, the physical core-set change-processing protocol, the application

group change-processing protocol, and the network partition resolution protocol. Each of

these protocols are described in detail in the following section, using psuedo-code

algorithm listings and event diagram illustrations.

A. PHYSICAL MONITORING PROTOCOL

1. Pairwise Monitoring

As described in the previous chapter, mservers in the physical hierarchy are

arranged into monitoring-sets for the purpose of detecting mserver failures. Within these

monitoring-sets, the mservers conduct pairwise, peer-to-peer monitoring. The monitoring

mserver periodically sends a Query message to the monitored mserver, which responds

with a Reply message indicating normal operation. The algorithm for this physical

monitoring protocol is shown in Figure 14, with the description following.

Monitoring mserver
/* when monitoring timer has expired */
1. formessage (Query, currentchge. excludelist)
2. send _mesage (Query message, monitored mserver)
3. messg = Reliable receive (Replymessage, Query_message)
4 if(messg !=Reply message) /* failed mserver
5. declare the monitored mserver failed
6. else
7. reset monitoring timer

Figure 14: Physical Monitoring Protocol

41

Figure 14 shows the procedure used by the monitoring mserver. In lines 1 and 2

the Query message is sent to the monitored mserver. Line 3 uses a function called

Reliable-receive, explained in the next section, which a uses timeouts and retries to ensure

the Reply message is received in a reasonable period of time. Lines 4 and 5 detect the

monitored mserver failed if it did not respond to the Query. Finally, line 7 resets the

monitoring timer to repeat the process after a suitable period.

2. Failure Detection, Timeouts, and Retries

The primary means of detecting an mserver failure through monitoring is the use

of timeouts and retransmissions of the Query message. If after a preset number of

timeouts and retries the monitored mserver still has not responded, it is assumed to have

failed. The Reliable-receive function in Line 3 of Figure 14 performs this timeout and

retry sequence. The function is termed "reliable" because it ensures a reliable

communication over a single link: that is, the monitored mserver either responds in a

reasonable period or is determined to have failed. The algorithm for this function is listed

in Figure 15.

Reliablereceive (expectedmessg, query messg)
/* returns the received message */
I. set-timer (timeout)
2. retries = n
3. while ((timer not expired) and (messg != expected messg))
4. receive message (messg)
5. if((messg != expectedmessg) and (retries > 0))
6. reties = retries- 1
7. sendmessage (querymessg, destination)
8. set_timer (timeout)
9. goto 3.
10. return messg

Figure 15: Reliablereceive

42

Line I and 2 initialize the function Line 3 begins the main reception loop. Line

4 is a timed receive function, which returns the received message immediately upon

reception or times out waiting and returns a NULL message. The main loop is executed

until the expected message is received or the main timeout period expires. Lines 5

through 9 perform the retry sequence. If the expected message is received the function

returns immediately, otherwise, the function times out and returns whatever message, if

any, was received. By examining the returned message, the monitor is able to decide if the

monitored mserver has failed.

B. APPLICATION GROUP MONITORING

The protocol used by an MI to monitor the status of the application member

processes that it is interfacing is exactly the same as that used by the LAN mserver to

monitor the MIs running on the host computers of the LAN. The MI periodically queries

each application member process, using the Reliable-receive function, and declares any

application processes not responding as failed. Figure 9 shows the arrangement of LAN

mserver, Mls, and application member processes.

C. PHYSICAL CORE-SET CHANGE PROCESSING

At the heart of the MS is the ability of a small set of mservers to make a consistent,

mutually agreed upon decision about membership changes to physical sets of mservers and

application groups of any size. This section describes the types of changes processed, the

basic change-processing protocol used by a core-set to commit these changes, and

additional protocols used in the event of failures of mservers within the core-set.

I. Coordinator

The coordinator is the core-set mserver responsible for coordinating the

processing of the current membership change. One of the strengths of the MS is that any

mserver can become the coordinator, either initially upon detecting or receiving a change,

43

or following the failure of the current coordinator. Also, the coordinator only exists in

that capacity while the current change is being processed, when there are no membership

changes to process in a core-set, there is no coordinator. The coordinator for each change

is determined by a combination of the type of change, which core-set mservers detect or

receive the change, and a priority associated with each change. In addition to determining

which mserver will act as coordinator, these criteria also ensure that only one change at a

time is committed by a core-set

2. Types of Changes

There are three primary types of membership changes processed by a core-set of

mservers: requests, failures, and dynamic reconfigurations.

a. Requests

Requests are voluntary, planned membership changes, submitted to the

core-set for processing by an application process, membership service user, or system

administrator. Change requests for the MS physical hierarchy may be of any type listed in

Table 4, with the exception of Fail and (CoordFail. Application group change requests

may be of any type used for physical change requests except Addfparenl and Deliparent.

Physical change requests are multicast to a specific core-set in the hierarchy by a system

configuration call, usually invoked by a system administrator during manual configuration

of the MS hierarchy. The physical change request is received by all mservers in the

selected core-set. Each receiving mserver queues the request, to be processed when other

higher priority changes have completed processing. Application group change requests

are submitted to the resident MI process on the host computer by the application or the

MSU. The MI then propagates the request to the core-set mserver above it in the

hierarchy. The receiving core-set mserver queues the request to be processed when other

higher priority changes have completed processing.

44

b. Failures

The second primary type of membership changes are detected failures.

These detected failures may be the result of the actual failure of an mserver, MI, or

application process, or the host machines upon which they are running. Additionally,

network partitions will be perceived as failures of the partitioned mservers, and will lead to

the processing of failures and reformation of the partitioned subsets of mservers and

subgroups of application processes. The partitioning of the MS physical hierarchy leads to

a partitioning of the application groups residing on this hierarchy. The MS automatically

reforms both the physical hierarchy and the supported application groups in the event of a

network partition. Failures detected or received by a core-set mserver are queued and

processed according to their priority. Multiple failures queued at a core-set mserver are

processed all at once, in a "batched" manner. This greatly reduces the time required to

reform physical core-sets or application groups.

c. Dynamic Reconfigurations

The final type of changes are the result of automatic actions taken by

core-sets of mservers. As part of the processing of multiple failures caused by a network

partition, a core-set is often partitioned into two or more subsets. After the reformation

into subsets has occurred, these sub-core-sets attempt to reform into the original core-set

by sending messages to the other subsets of mservers. Since the sub-core-sets still share

the same multicast address, once the network partition is mended, the other sub-core-sets

receive these refor tion messages. Upon learning of the existence of a sub-core-set from

the original core-set, the partitioned subsets of mservers reform into the original core-set

automatically. In addition to reforming the physical core-set, all application groups which

were partitioned and are still functioning are also reformed. The reformation process for

both physical core-sets and application groups merges the currently existing membership

of each, taking the union of all subsets or subgroups, and making the reformed core-set or

45

application group membership the current view. In the event that the network partition is

not repaired in a predetermined period of time, the partitioned subsets of mservers will

abandon their attempts to reform the original core-set, and will create a new multicast

group with only the current core-set mserver included.

Another type of dynamic reconfiguration occurs when new members join an

application group, causing the span of the application group to increase beyond that

presently covered by the current application core-set. In this event, the application

core-set must be moved from the present level in the physical hierarchy to a higher level

covering the new span of the application. This new level must be at or below the

name-scope and membership-scope levels of the application group, if these levels were

designated when the application group was created. The MS automatically moves the

application core-set to the new level. In a similar manner, the departure of application

member processes may lead to a reduced span of the application. An application core-set

must have at least two mservers with application members in their subtrees; otherwise,

there is no need to have the application core-set at this level in the hierarchy. If the

application core-set is reduced to only one mserver supporting an application, the

application core-set will automatically move down to the child-set of this mserver.

The repositioning of an application core-set is initiated by the set of mservers

detecting the need to move the application core-set. Messages are exchanged between the

old and new core-sets and a change involving the join or departure of the instigating

application member is processed along with the change in application core-set level by

both core-sets. After committing the changes, the internal state of all mservers in both

core-sets is changed to reflect the new application core-set level.

3. Ordering and Priority of Change Processing

A key issue associated with processing membership changes to sets of mservers

or application groups is the ordering of changes committed by the core-set. As previously

described, to guarantee consistent ordering of membership changes at all mservers in the

46

core-set, only one change may be committed at a time. However, it is possible that more

than one membership change may be submitted to or detected by the core-set at one time.

Each receiving or detecting mserver in the core-set will attempt to become the core-set

coordinator and initiate the change it received or detected. These multiple change

initiation attempts are referred to as "virtually simultaneous", since they have all been

initiated before the core-set has reached a consistent and uniform decision on the current

chnnge to process. If the core-set had already chosen a current change and coordinator, a

newly initiated change would be processed after completion of the current change.

To resolve these virtually simultaneous changes and select only one change to be

processed, a prioritization scheme is used. This prioritization scheme uses the type of

change and the gid and rank of the subject of the change to decide which change will be

processed by the core-set. The highest priority is given to any current change being

processed by the core-set; that is, a change which has been consistently accepted by all

core-set mservers. It is essential that such a change progresses to completion at all

core-set mservers; otherwise, the possibility of inconsistent membership views exists if

some mservers commit the change while others do not. The next higher priority is that

physical changes always have priority over application group changes. This is because it is

important to ensure a complete and whole MS before attempting to change the

membership of an application group using the MS. Once these decisions have been made,

the priority of the change is determined by the rank of the subject of the change. The only

exceptions to this rule are for the failure of the coordinator of the current change or

Join. The failure of the coordinator has priority over otherwise equal status changes. A

newly joining mserver or member will not have an associated rank until after the join is

completed. For this reason, the network address of the joining member is used as a rank

number to give a priority among Joins. The final rule used to determine the priority of

virtually simultaneous changes is applicable when changes are submitted to the core-set by

different application groups with identical subject rankings in each group. In this case, a

47

tie-breaker is needed, and the rank of the receiving mserver is used to decide which

change will be processed.

4. The Basic Change-processing Protocol

As discussed in the description of an mserver core-set, the basic

change-processing protocol used by a core-set is a modified version of the three-way

handshake used in unreliable networks to ensure reliable message delivery. An event

diagram illustrating the sequence of message transmissions and receptions is shown in

Figure 16. The algorithm for the coordinator of the basic change is listed in Figure 17.

The algorithm for the non-coordinator core-set mservers is listed in Figure 18.

PunaI Ma hII
Inhtiae Comm&i

coordinator 3

"time

Figure 16: Basic Two-Phase Change-Processing Protocol

The basic change-processing protocol consists of two phases: the Initiate and

Commit phases. In the Initiate phase, the coordinator multicasts an Initiate message to all

mservers in the core-set. The core-set mservers respond with ACKs, acknowledging

reception of the Initiate message. When all ACKs have been received by the coordinator,

the Commit phase is begun with the coordinator multicasting a Commit message to all

core-set mservers, indicating that it is safe to commit the change. All change-processing

messages use timeouts and retries to ensure continual progress in completing the change.

The procedures Reliable.receive and Reliablemulti-receive perform these functions.

48

Coorhastor BasicChamp
/* coordinator has been identifed by reception ofa charge reques or detection oft fod
msmver */
/* Initiate phase
I. - crrent chang = chang data (received or detected)
2. update (exdudefst in teral snat)
3. fbrm ~messag (Im~ke, a retdiange, vAccde hat)
4. multicast OIiftiaftemessage, I(core set - vwiade_hsg - coofrdiaor))
5. Reliable nuahi- receive (ACKmessage Iniatemesag. Icorejset - occkxe list -

Coordinator))-
/* Commit phase */
6. update (excdude lfist, internal mtae, aD'r~enutdwW)
7. fbnirnessage (CCwwiVMI cuairent chnge ex&cc~dest)
8. nualticast (Conuiut mesusae, Icorie set - evchde-ha - coordiator))
9. update (internal state)
1 0. previous dwWe=c anmnt~~chang
11. groupvyew = groupyiew + I

Figure 17: Coordinator Basic Change Protocol

Non-coordinator Basic Change
/* core-set mseaw has received and decoded Mnlawe miessage ~
I* Initiate phase */
I . curTeit chang = chang data (received)
2. update (exclude List, internal state)
3. fbnn messag (ACK, current chnge exdludeý list)
4- sendmssag (ACKý_message coordinator)
5. messg =Reliable -receive (Commit mesage MsigQuery message)
6 if(messg != Commit mnessage) /* fatiled coordinator *
7. goto, Broadcast Ekction Protocol
/* Commit phase *1
8. update (intena state)
9. previousciune= cuirTekdtang
10. gmoupyiew =group iew +

Figure IS: Non-Coordinator Basic Change Protocol

49

a. Timeoats and Retries For All Messages

The need for timeouts and retries of messages has been discussed previously.

The function Reliablereceive accomplishes this for unicast messages, as described in the

monitoring protocol section. The same function is performed by the procedure

Reliablemultireceive when multiple responses must be received, as shown in Figure 19.

The algorithm for the Reliablemultireceive is listed in Figure 20.

<-- tineout >" dwt "t~
E- tmeo , -E timeout •->< timeout----

courinaom ttfl I retryv 2
co t detect failure

core-set
mservers _____________________________ ___

failure h

Figure 19: Message Timeout, Retries, and Failure Detection

Rdiable multi receoe (expectedmessg, last_messg, responders)
/* Last messg has been sent, now collect expected messg responses. Modifies the set of
responders to reflect those not responding */
I. set timer (timeout)
2. retries = n
3. initialize (all responders = notjresponded)
4. numnresponders = nunber of responders
5. responses = 0
6. while ((timer not expired) and (responses < num_responders))
7. receivemesge (messg)
8. if ((messg - epected_rnessg) and (responder =- notresponded))
9. responder = responded
10. responses = responses + 1
II. responders = (responders - (all responding responders))
12. if ((responses < num_responders) and (retries > 0))
13. retries = retries - 1
14. multicast (last__ mg, responders)
15. set timer (imeout)
16. goto 6.

Figure 20: Reliablemultireceive Algorithm

50

Lines I and 2 of the Reliablemulti-receive algorithm initialize the timer and

number of retries. Lines 3 through 5 initialize the set of responders and number of

responses. Line 6 begins the main loop to collect responses from the set of expected

responding mservers. Line 7 is the timed receive function described in the

Reliablereceive function. Lines 8 through 10 determine if the response is valid and not a

duplicate, and if so, mark the responding mserver as having responded. Line 1I calculates

the new set of expected responding mservers after the loop has completed. If any

mservers have not responded and the retries have not been exhausted, lines 12 through 16

initialize for another timed reception loop to attempt to collect the remaining responses.

At the end of the procedure, the set of responders has been reduced to only those who

failed to respond. These mservers will be declared failed by the calling mserver; in this

case, by the coordinator in line 5 of the basic change protocol.

Figure 21 is an event diagram showing the sequence of messages in the

event of a lost or delayed A CK message from a non-coordinator core-set mserver. After a

ml m2 m3 m4

ml coordinator for Cl Ia
begin ACK tineout m4 does not receive

Inklate (Cl)
Ac' l - .c

ml times out on m4's
ACK, resends Initiate m

m4 sends ACK (CI)

ml sends Commit (Cl) cO.___tcmt

anicommuitl

Figure 21: Lost or Delayed ACK Message During Initiate Phase

51

timeout period, the coordinator resends the Initiate message, and receives an A(K

message. The core-set then commits the change. In this event diagram, the multicast of a

message is indicated by multiple arrows emanating from a small circle

Figure 22 shows a similar situation, in which a non-coordinator mserver has

not received an expected Commit message from the coordinator. This mserver sends a

Msg•Query message to the coordinator, querying the coordinator about the missing

Commit message. The coordinator realizes that the querying mserver must not have

received the original Commit message, so it resends the message. The core-set then

completes the change.

M1 M2 M3 m4

ml coordinator for Cl I

Initiate (Cl) Pse - • • .. •.•-- begin timeout for

"Iitat (CI " .. b... s.. Commit (C 1)f

ml sends Commit (Cl)

m2 and m3 commit C I1 m4 does not receive
Commit (CI)

~~m vntimesout
sends MsLQuery (CI)

Figure 22: Lost or Delayed Commit Message

Figure 23 shows the sequence of events when a non-coordinator mserver is

unable to receive from the coordinator. m2 is unable to receive the Initiate message from

coordinator ml, and after timeouts and retries, the coordinator declares m2 failed. While

the coordinator was waiting to receive an ACK message from m2, it received a

52

MsgQuery message from m3 and m4, querying the coordinator about the expected

C'ommit message. The coordinator responds with a Wait message, telling m3 and m4 that

the coordinator is still collecting A('Ks, and will send the (Commit message when done.

The use of the MsgQuery and Wait message is described in the next section. After the

coordinator has detected m2 faied, it sends the Commit message with gossip about m2's

failure to m3 and m4, completing the change and informing them that m2 has faied.

mcoordinator for C1, Iiit
begins ACK timeout =3 and m.4 eeIie

'C .4
Initiate (C I), .2 does not

In times out on m2's i1fa,
ACK, meends Initiate ý -:

fat~ (0) *Cr (C11 I(3 and .4 timeout on
!is Commit (C I), send

MsxLQuery

mlK tiesed ou tit e on mIsWi C) m sends Wait to m3 and
ACK, esend Initate 4 because It I. still

waiting for ACK from m2

mlI times out on .2's
ACK. detects .2 failed, aantc
sends Commit (ClI) with . n 4cmi l
gossip that m2 failed noten m2' famit ure

Figure 23: Lost or Delayed ACK Message During Initiate Phase

53

b. Virtually Simultaneous Changes

The basic change protocol , listed in Figures 17 and 18 for the coordinator

and non-coordinator, respectively, is unable to resolve the virtually simultaneous changes

discussed previously. The Reliable-receive and Reliable-multi-receive functions used by

the basic change protocol are only capable of receiving the expected message or declaring

the non-responding mserver or mservers as failed. They are not able to handle unexpected

messages, including an Initiate message from another mserver attempting to initiate a

change To allow for the occurrence of simultaneous changes and other unexpected

messages, the Reliable-receive and Reliablemulti-receive functions were augmented to

cover all possible unexpected messages. These augmented versions are listed in Figures

24 and 25.

The augmented Reliablereceive function has the same name and is called

with the same parameters as the simpler version in Figure 15. The new version is used in

place of the simpler version in line 5 of the non-coordinator basic change protocol. The

modified or added lines to the algorithm are underlined in Figure 24. The new version is

used by a non-coordinator core-set mserver waiting for a Commit message from the

coordinator, by an MI or non-core-set niserver submitting an application change and

waiting for a Direct message, and by the monitor mserver waiting for a Reply message. A

detailed description of the augmented Reliable-receive function follows.

Lines 5 through 8 in the new algorithm detect an overlapping change

initiated by an mserver that already completed the current change. A Wait message is sent

to the attempting mserver to postpone initiation of the new change until the old change is

completed. An example of this situation is shown in Figure 26. Lines 9 and 10 detect the

failure of the coordinator and call the election protocol, which will be described in the next

section. Lines I l and 12 detect a virtually simultaneous change initiation of higher

priority. The mserver drops the current change and begins processing the new change.

An example of thin situation is shown in Figure 27. Lines 13 through 15 detect the

54

Reliale receive (ex dmes query meg)
/* Augmented Reliablereceive used by msver to reliably receive Commit from
coordinator or Direct from parent-mserver. Handles relevant unexpected messages.
Returns the received message */
I. set timer (timeout)
2. retnes = n
3 while ((timer not expired) and (messg != xpectedmessg))
4. receive_message (messg)
5. if(messg =-- Initiatemessage or CoordFail message)
6. if (messg is from next change) /* overlap from next view */
7. form message (Wait, currentchange, excludelist)
8. send message (WaitVmessage, responder)
9. if(messg = Coord_Failmessage of high priority or current coordinator)
10. goto Broadcast Election Protocol
11. if (messg = Initiatemessage of higher priority or cuxrent coordinator)
12. goto Non-Coordinator Basic Change Protocol
13. if (messg = Waitmessage) /* response to Asg•Query */
14. wait (waittimeout)
15. goto 1. /* restart Reliablereceive for expectedmessg */
16. if (messg = MsgQuery_message) /* other mserver quaying status */
17. if (current change) /* other mserver nmst wait for next message ,/
18. fonrmmessage (Wait, currentchange, excludelist)
19. sendmessage (Wait message, responder)
20. if ((previous unfinished change) and (mygid = previous coordinator))
21. form message (Commit, current_change, exclude list)
22. sendmessage (Commitmessage, responder)
23. if((messg != expectedmessg) and (retries > 0))
24. retries = retries - 1
25. sendmessage (query_messg destination)
26. set-timer (timeout)
27. goto 3.
28. return messg

Figure 24: Augmented Reliablereceive Algorithm

55

reception of a Wait message in response to a MsgQuery message sent previously. The

mserver waits for a period, then restarts the Reliable _recei[2 An example of this action

is shown in Figure 26. Lines 16 through 22 detect a received MsgQuery message and

perform the necessary actions. If the Msg Query is about the current change, it is from an

MI or child mserver waiting for a Direct message. The querying MI or mserver is sent a

Wait message to stall their reception of the expected message. If the Msg_ Query is about

the previous change and the receiving mserver was the coordinator of the previous

change, then the querying mserver did not receive the Commit message. The receiving

mserver sends a Commit message to complete inge. An example of this

situation is shown in Figure 26. The remaining lines of the function are the same as the

original, and perform the primary function of receiving the expected message within the

timeout period.

The augmented Reliablemultireceive function has the same name and is

called with the same parameters as the simpler version. The augmented

Reliablemultireceive function is used in place of the simpler version in line 5 of the

coordinator basic change protocol shown in Figure 17. The modified or added lines to the

algorithm are underlined in Figure 25. The new version detects unexpected messages

received while collecting ACK messages, and responds to them appropriately. A detailed

description of the Reliablemultireceive function follows.

Lines 8 and 9 detect a simultaneous change of higher priority. The

coordinator stores, then drops the current change, ceases to be a coordinator, and begins

processing the new change. An example of this action is shown in Figure 27. Lines 10

and 11 detect the failure of the current coordinator or a new coordinator for a virtually

simultaneous change of higher priority than the current change, and call the election

protocol, which will be described in the next section. A received CoordFail message for

a change of lower priority is quietly discarded. Lines 12 and 13 detect the reception of a

Wait message sent by an mserver still processing the previous change. The coordinator

56

Relible mulid re1e(eicpected messg, last messg. responders)
/* Augin cted Relble maidt~rceive, used after last-messg is multicast to reliably
collect all responses from other mservers or MIs. Handles relevant unexpected messages.
Modifies the set of respondiers to reflect those niot responding*/
I . set -timer (timeout)
2. retries-=n
3. initialize (all responders = not responded)
4. num _responders =nunber of responders
5. responses=O0
6. while ((timer not expired) and (responses < ntum responders))
7. receive,_message (messg)

8. if~essg =Initiate messae of higher priority than current chang)

9. goto Non-Coordinator Basic Change Protocol
10. if (messg = CoordFail message of higher priority than current change)
11. goto Broadcast Election Protocol
12. if (messg = Wait message flim previous change) /* group view -1 I
13. wait (waitmneout)
14. goto Coordinator Baskc Change Protocol /* restart change *
15. if(messg =-- MsgQuery message) /* other mserver querying statub~
16. if (current change)
17. if (responder did not receive last mnessg)
18. send~message (last messg responder)
19. else /* responder already received last mnessg, so must wait ~
20. form_messag (Waif, current_change, exdude_lis)
21. send message (Wait message, responder)
22. if ((previous unfinished change) and (mrygid ---previous coordinator))
23. form,_message (Commit, currenit_change, exclude lfist)
24. send message (Commit message, responder)
25. if ((messg ex-pected message) and (responder = not responded))
26. responder = responded
27. responses = responses + 1
28. responders = I responders - (all responding responders))
29. if ((responses < num responders) and (retries > 0)) /* more responses to collect ~
30. retries =retries,-1
31. set timer (timeout)
32. mufticast (last messg, senders) /* resend original message ~
33. goto 6

Figure 25: Augmented Reliable-multi-receive Algorithm

57

will perform a wait timeout, the resume the current change. An example of this is shown

at the top of Figure 26. Lines 15 through 21 detect a received MsX_Query message and

perform the necessary actions. If the MsgQuery is about the current change and the

querying mserver did not receive the Initiate or Direct message sent prior to the

ml m2 m3 m4

C1 Commit Phase (GV-n) owl C1 1ad. i~hC
m2 coordinator for C2 mm to m2 s os.G~nl Commit to m4 is lost
(GV~n+)-m. .and .m3 waiting for

m. begins message A Co. mit for Cl, send
timeout wait T.- - Waft (C2) to m2

m2 begins wait message m3 finishes C1
timeout timeout

ml times out waiting I
for Commit (C2), sends wc m4 times out waiting for
MsgQuery (C2) wait (C2) Commit from ml, weeds,• •~mewt--MQry()

ml begins wait timeout
M -C-

ml gets MsLQuery (CI)Mg.u"C
from m4, responds with
new Commit (CI) wa (C2) .4 finishes Cl

m2 finishes wait timeout,
resends Initiate (C2) _(

ACAK ((2

al are now processing C2

Figure 26: Resolution of Overlapping Changes

Reliablemultireceive call, the mserver resends the appropriate message. An example of

this situation is shown in Figure 26. If the querying mserver did receive the prior message,

then the MsgQuery is about a new change which has been started before the old change

58

completed. The coordinator sends a Wait message to stall the processing of the next

change until the last change is completed. An example of this is shown in Figure 23. If

the MsgQuery is about the previous change and the receiving mserver was the

coordinator of the previous change, then the querying mserver did not receive the Commit

message. The receiving mserver sends a Commit message to complete the last change.

An example of this situation is shown in Figure 26. The remaining lines of the function are

the same as the original, and perform the primary function of collecting the expected

response message within the timeout period.

The event diagrams in Figures 26, 27, and 28 show various occurrences of

concurrent changes attempting to be processed in a core-set at one time. Since the MS

guarantees that only one change at a time will ever progress to completion, a method of

resolving the various concurrent change attempts must be used. The algorithms in

Reliablereceive and Reliablemultireceive provide the necessary capability to resolve

MI m2 m3 w 4

m I coordinator for Ci 1 ia~c

i r • w%4 m4 coordinator for C2S• m4 learns C!I has

priority; stores C2,

Cl has higber priority, m4 Igpores C2 messages
C2 is dropped by a&l

C1 Commit Phase eto

Sm4 resumes C2

Figure 27: Resolution of Virtually Simultaneous Changes

59

concurrent changes to a single change. Figure 26 shows one case where an mserver m2

has completed the previous change Cl and immediately initiates the next change C2. This

is a very likely occurrence, since each mserver will queue failures and changes, waiting for

the next opportunity to initiate them. Mserver m4 did not receive the Commit message for

C 1, so when it receives the Initiate message for C2 it sends a Wait message to the new

coordinator m2 to postpone the new change C2 until the old change C l is completed. m4

times out waiting for the Commit message for C I and sends a MsgQuery to ml, which is

now processing C2. ml receives m4's MsgQuery while using the Reliablerece-ve

function and sends m4 another Commit message. m4 is now able to complete C I. After

m2 finishes the wait timeout, it resumes C2

Figure 27 shows t%.'o core-set mservers attempting to initiate virtually

simultaneous changes. All core-set mservers receive both Initiate messages, although

perhaps in different order due to the asynchronous environment. All core-set mservers

have the same core-set state information, and therefore make exactly the same decision

about which change has priority. In this case, CI has priority, and is therefore recognized

as the change to be processed by all core-set mservers, while C2 is dropped by all. The

candidate coordinators must collect ACKs from all other core-set mservers, including the

other candidate coordinator, before sending the Commit message. The candidate

coordinators make the same decision about which change has priority; therefore, only one

coordinator will be selected and only one change will be processed. If all core-set

mservers receive all Initiate messages, it is impossible for more than one change to

progress to completion in the core-set It will be shown later, that under non-ideal

circumstances, some core-set mservers may have failed or do not receive all messages,

leading to a situation where more than one change is being processed in the same core-set.

However, it will also be shown that if this occurs, the core-set will always partition in such

a manner that all core-set mservers in the partition will be processing the same change, and

will arrive at the same consistent view.

60

Figure 28 is a combination of the overlapping change shown in Figure 26

and the virtually simultaneous changes shown in Figure 27. This event diagram shows

that even under the circumstances when changes overlap at the beginning and end of a

change, only one change at a time progresses to completion.

ml m2 m3 m4

C I Commit phas (GV-n) t SMnCI)
ml and m2 begin ml and m2 fltsb CI
simultaneous changes
(GV-n+l) Co.iComit to w4 is lost

mlI realizes C2 has .4 and .•3 wa•ting for
priority; stores C3, Commit for CI, wed
begins C2 Wait (C2) to n2message

m2 begins wait tmeout m3 finishes Cl, starts C3

tileouC3WxC3 =4 waiting for Commit
for Cl,,eads Walt to ml

mlI ignores C3 responses ,
w (C2) .q-L w4 times out waiting for

d Commit from 1l, smods

ml responds with

m

new Commit (Cl)

as4 foinshes aI

m2 finishes wait timeout,
rmends Initiate (C2) t al and m3 realize C2

aN ae nw pocesingC2 ('2)t A%) has priority; drop C3,
all are now processing C2 Q) begin processing C2

Figure 28:Virtually Simultaneous and Overlapping Changes

61

5. Coordinator failure

The basic change-processing protocol assumes that the coordinator of the change

will continue to function throughout the processing of the change. The protocol

definitions and examples to this point handle various situations, including the failure of

non-coordinator core-set mservers. However, it is entirely possible that the coordinator of

a change may fail or be unable to communicate with others during the processing of a

change. In the event of the coordinator failure, a new coordinator must be elected.

Birman and Riccardi [9] have proven that when the coordinator of a change can fail, a

three-phase change protocol is required. To this end, another phase must be added to the

two-phase basic change protocol. This phase is a broadcast election phase, as described in

[26], which is conducted to elect a new coordinator to resume the original change being

processed. After the distributed election is accomplished, the new coordinator will restart

the original change with a new Initiate message to all surviving core-set mservers, or,

under special circumstances, will simply send a Commit message to complete the change.

An illustration of the three-phase election and change processing protocol is shown in

Figure 29, and the algorithm or the broadcast election is listed in Figure 30.

Pias ! Phase 11 Phase M
Edeio Initate Commit

detector .1\ -

core-set W/'j /V ~/ '
Maervers_________________

time

Figure 29:Election and Change-processing Protocol

62

Broadcas Elemui•

/* Coordinator faixre has been detected. Elect new ordinator /I update (evdudest, trn• state)
2. fbnmmessage (Coo,'d Fal, arent_chidg ecdudeest)
3. muicast(CoordFailmesag {coreset-ecude fist- coodi0tor))
4. Reliable multireceive (CoordFailmessage, Coord_Failmessage, {core-set -

acludelist -corinator))
5. update (esclude U, internal state)

/* detemri new coordinator from respon sr v *
6. coordinator = highest rank rmver with aurent change active
7. Resume_change (wrrentchange, coordinator)

Figure 30:Broadcast Election Protocol

The broadcast election protocol is commenced upon detection by one or more

mservers of the failure of the current coordinator. This detection could occur by

monitoring or by the timeout of an expected message while using the Reliablereceive

function. The detecting mserver will multicast a CoordFail message to all other core-set

mservers, which will include the status of the mserver in processing the current change.

This mserver will then collect responses from all other mservers with the

Reliablemultireceive function. The other mservers receiving the CoordFail message

will also multicast their status and collect responses from all others. In this way, all

core-set mservers learn of the status of all other core-set mservers with respect to the

interrupted change. These steps are covered by lines I through 5 in Figure 30. In order

for an mserver to become the new coordinator, it must have received the original Initiate

message, but not yet have committed the change. Only an mserver still processing the

change will have sufficient information to restart the change. There is guaranteed to be at

least one such mserver, since only an mserver still processing the change could determine

that the coordinator had failed. Since all mservers have learned the status of all other

mservers, a uniform distributed decision can be made by all as to the identity of the new

coordinator. To select the new coordinator from those mservers still processing the

63

current change, a priority scheme is used. The mserver with the highest rank in the

core-set, still processing the original change, will become the new coordinator. All

core-set mservers know the rank of all other core-set mservers, so they all make exactly

the same distributed decision. Thus, a single new coordinator is chosen.

Once the new coordinator is chosen, it will resume the original change using the

two-phase basic change-processing protocol, as shown in Figure 29. However, if at least

one core-set mserver has committed the change, then it is safe for the coordinator to

immediately multicast a Commit message to have all core-set mservers commit the change.

This is possible due to the fact that in order for any mserver to have received a Commit

message from the failed coordinator, that coordinator must have received ACKs from all

surviving core-set mservers. This means that all mservers in the core-set have knowledge

of the change, and can therefore commit the change. Any mserver that did not have

knowledge of the change would have been detected failed by the old coordinator, using

the Reliablemultireceive procedure. The old coordinator would include all detected

failures in the excludelist added to each multicast message, and thus any mserver

receiving the Commit message would learn of the detected failure of all mservers which

had not received the original Initiate message. The mserver, learning by gossip of the

failure of other mservers, would cease to communicate with them. These excluded

mservers will be removed from the core-set, so that only mservers which had received the

original change remain.

Figure 31 shows the event diagram for the compressed election and

change-processing protocol described above. Figure 32 is the listing for the

Resumechange function used in Line 7 of the broadcast election protocol. This function

makes the decision for the new coordinator whether to restart the original change with an

Initiate message or use the compressed protocol and simply multicast a Commit message

to complete the original change.

64

PbMe I FMe i
Eiedm COmMk

detetor ~ ~

core-got W/Z'-7

Figure 31: Compressed Election and Change-processing Protocol

/* Following broadcast election of new coordinator. /

1. if (any coreset nmerver has comuitted the change)
/* then use conmressed change protoco - send/recive Coemuit orny */

2. if(coordinator)
3. form_message (Cnmri, cwTent change, eclude_ist)
4. multicast (Comnitmessage, I coreset - exldelist - coordinator))
5. else /*non-coordinator */
6. messg = Reliablereceve (Comnt_mesmage, MsgQuay_message)
7. else /* no mservers have committed the change - nmust restart *l
8. Rntiate (nhange)

Figure 32: Resume-Change Algorithm

Examples of various scenarios involving the failure of the current coordinator are

shown in five event diagrams on the following pages. These examples illustrate some of

the more likely scenarios which might be encountered when a coordinator is detected

failed, and the sequence of events leading to the election of a new coordinator and

completion of the original change.

Figure 33 shows the sequence of events when the coordinator faids in the Initiate

phase, immediately after multicasting the Initiate message. All other core-set mservers

time out waiting for the Commit message, detect the coordinator failed, and conduct an

election for a new coordinator. The new coordinator completes the original change.

65

M1 m2 M3 m4

m I coordmnator for C! Ia ••

coordinator fails -- 2, =3, and m4 beginImessage timeout

Q1 1 I- atitmeout, query
L c coordinator

(cfl a t time out, query
coordinator again

d m4 times out first,

coordinator detected sends CooedFai
failed m2 and m3 send

ecion Phase Coord Fail

m2 bas highest rank,
l becomes coordinator,

P. A-0 and re-Initiates C I

Figure 33: Coordinator Failure During Initiate Phase

Figure 34 illustrates the case where the monitor of the coordinator is unable to receive

from the coordinator. The monitor m2 detects the coordinator ml failed by monitoring

and initiates a change C2 for the failure of ml by multicasting an initiate message to all

core-set mservers. The other core-set mservers are already processing the change C 1.

The change C2 is recognized by m3 and m4 as a failure of the current coordinator;

however, it is also a virtually simultaneous change, since no mserver has committed C 1.

For this reason, C2 is treated as a virtually simultaneous change of higher priority than C 1,

avoiding the need to elect a new coordinator. Since the failed coordinator initiated the

original change and then failed, there is no need to resume processing of this change. If an

66

M1 m2 W3 m 4

ml coordinator for C1, laid
I~egZ-- ACKl tieot n and m4 receive

begis AC timoutInitiate (Cl1), .2 does not
(GV=n)
m2 detects ml failed by
-moitoring, meds

".msoto2- t - Initiate (C2) for ml's failure
l times out on m2's Ir .', -(GV-n)

ACK, resends Initiate 2 AI''. m3 and m4 realize C2's
- •subject is the coordinator,

drop C1 and begin C2

S-C (22) m2, m3, and m4 commit

C2, ml's failureml thmes out on m2's

ACK., reends Initiate (i

ml times out on m2's
ACK, detects m2 failed, -clMi
sends Commit (CI) with m3 and m4 ignore message
gossip that m2 failed rM m3a

Figure 34: Coordinator Failure With Lost Initiate Message

application group submitted the change to ml, the group will be partitioned at ml anyway,

so there is no need to process the submitted change on the other side of the partition. If

mr's change was a physical change about a core-set mserver, it will either be redetected

and processed, or perhaps will remedy itself

Figure 35 illustrates the case where the coordinator is detected failed in the

Commit phase, after one or more mservers have received the Commit message. The

core-set mservers conduct a broadcast election in which m2 becomes the new coordinator.

Since m4 committed the original change, the compressed change protocol is used, and m2

multicasts a Commit message to finish the change.

67

ml m2 m3 m4

ml coordinator for C1 .a • ___ -

NC'

Initiate (C 1) Phase

m2 detectsmlI failure by
ml sends Commit (Cl) 'amt co rodd monitoring, sends

Coord Fail
•r,•'•- ,• • •-•_--'--•m4 commits C!I

m2, W3, and m4 begin (co t
election for coordinator r6 Pp m3 and .4 learn of m I's

upon learning of m 's failure, ignore messages

perceived failure from ml

m2 has highest rank,
becomes new coordinator,
finishes CI with Commit

Figure 35: Coordinator Failure In Commit Phase

Figure 36 illustrates an unusual case where the failure of the coordinator and lost

messages lead to one core-set mserver committing the change C l (m3), one mserver still

processing the change (m4), and one mserver never having received the change (m2). As

a result of this situation, m4 will become the new coordinator, since it is the only mserver

still processing C 1. Mserver m3 learned of m2's detected failure with the Commit message

received from the original coordinator ml. The end result is that m3 and m4 commit C I

and reform into a new core-set, while m2 never learns of C I, and is excluded from the

original core-set.

The final event diagram shown in Figure 37 shows a situation in which the

coordinator has failed after multicasting an Initiate message which was received by only

one core-set mserver. Another core-set mserver, m4, also initiated a virtually

simultaneous change of lower priority. ml receives the Initiate message for both changes

68

ml coordinator for C1 Partition between m I
begins ACK timeout and.2esst

ACi (AflK 0 ~ .3, and m4 begin
message timeout

mlI times out on m21s ~ (I

3 an .4 tnimet out
ACK, resends Inltaite ý k sgjuev(0 uer' (ClNm3ad4tieo,

m I endsWai (C)
jquery coordinator

tom3 sends Wat4Cl
to m3 nd mm3 and .4 begin timed

mlI times out on m2's (C)wait for mlI's Commit
ACK, meends Initaite

mlI detects m2 failed,
sends Commit (Cl1) with COlumie(cl, m3 commits Cl, learns
gtossip about m2's failure of m2's failure. Message

to .4 lost, still waiting

previous coordinator (Cl' . 4 times out on wait for
fails M

M 'Q keIY ý Commit from ral, sends
(c r MsLQuery, retries, then

detects mlI failed

coordinator detected coord .al 3 sends Coord Fail
failedto m4 only, since it

m2 sends Coord Fail ydFia -. ljp detected m2 failed,
indicating it had never m4 learns of m2's failure
received Cl. None are
communicating with m2, C.alC 4 is hghest rank mserver
.2 times out on Commit, still processing Cl, sends
detects m4 failed, and in Commit (ClI) since m3 has
processing .4's failure, already finished Cl
detects m3 failed. m2
reforms as singleton set

Figure 36: Coordinator Failure With Lost Messages

69

Ml m2 m3 m4

m2 coordinator for CI %Coliatte(CI only ml gets Initiate (Cl)

coordinator fail C' m4 coordinator for C2
mI begins message ----.. , begins ACK timeout

sn~~ ~~ k eismsae-A (C',
timeout -ck(- m3 sees only C2,

ml sees C and C2,
Cl has priority

m I times out, sends I Al,
Query to coordinator (det 2's failure

by monitoring, queues
the failure

m I times out, sends m4 times out on ACKs,
another Query j k mresends Initiate (C2) to

mn and m2

ml times out, detects
coordinator failed, m nsends a Coord Fail ms3 and .4 learn ofCI,

a - -drop C2, note m2's failure,
begin election for CI

Figure 37: Coordinator Failure With Simultaneous Change

and decides that C I has priority, and therefore drops C2, assuming that all other core-set

mservers will make the same decision. However, m3 and m4 did not receive C 1, so they

continue to process C2. ml eventually times out on the Commit message expected from

the m2, detects the coordinator failed, and multicasts a CoordFail message to all core-set

mservers. m3 and m4 now learn of the higher priority change C I. Since no mservers had

committed C2, the change is dropped and m3 and m4 begin processing C I with an

election for a new coordinator.

70

D. APPLICATION GROUP CHAŽ%GE PROCESSING

The general description of application group change processing has already been

presented in previous sections. In this section, the protocols necessary to submit a change

to the application core-set and then reliably propagate the core-set change directive back

to the application are presented. These protocols are divided into the algorithms used by

MIs submitting or receiving a change directive, and those used by mservers in the

hierarchy or in the core-set of the application. Figure 38 shows the basic application

change protocol.

Submit Initiate Commit Direct

2nd-level P(ý- 1)
core-set 2

coordinator
lst-level mserver

submiting MI time

Figure 38: Application Group Change Protocol

1. MIs

The MI accepts change requests from the application groups that it supports and

relays these requests to the LAN mserver for submission to the application core-set. The

MI may also detect application process members failed and submit these changes as well.

The algorithms used by an MI are listed in Figures 39 and 40, for the submitting MI and a

non-submitting MI, respectively.

71

Submitting NU Basik Application Change
1* hMl received change request or detected change in an application group ~
1* Submnit phase */
i .wcrrent__change = application change data (received or detected)
2. update (internal state)
3. form ~message (Submit, aurrvint_,change)
4. send mnessage (Submit~message, parent mnserver)
5. messg =Reliable-receive (Diect mnessage, MsgQuery mnessage)
/* Direct phae*/
6. form,_message (ACK, currerit_change)
7. send mnessage (ACK mfessage, parent miserver)
8. update (initernal state)
9. appfication_.group~yiew = application_,group_view + I
10. reliably inform application of change

Figure 39. Submitting MI Application Group Change Protocol

Non-submitting NEI Basic Application Change
/* NU received change Direct message from parentl~mserver ~
/* Direct phase *1
I1. form-message (ACK, acurrent_change)
2. send message (ACK,_message, parent maserver)
3. update (internai state)
4. applicafiongr-oup view =application~group view + 1
5. reliably inform application of change

Figure 40. Non-submitting Mfl Application Group Change Protocol

72

R re

2. Mservers

The LAN reserver accepts application change requests and failures submitted by

the MIs running on the host computers of the LAN. These changes are then submitted up

the MS hierarchy of mservers to the application core-set, where the change is processed.

Once the core-set commits the change, all core-set mservers with application members

below them multicast the change directive to their children mservers with application

members below them. At each level an ACK is sent to the parent mserver to ensure

reliable delivery of the change directive to all application member processes The change

directive is propagated to each MI with members of this application, which then inform

the application members of the completed change. The algorithms used by mservers are

listed in Figures 41 and 42, for the non-core-set mserver and application core-set mserver,

respectively.

Non-core-set Mserver Basic Application Change
/* mserver received Submit message relayed from submitting MI, will reliably relay to
parentmserver /
/* Submit phase */
I. sendmessage (Submitmessage, parentmserver)
2. messg = Reliablereceive (Direct message, Msg.Query_message)
3. if(messg!=Directmessage) /*faiedparentmserver*l
4. goto Broadcast Election Protocol
5. update (internal state)
/* Direct phase */
6. formmessage (ACK, curmrentchange)
7. send _mesge (ACKmessage, parentmserve)
8. form Lessage (Direct, currentchange, exclude list)
9. multicast (Directmessage, (children with application members - excluded })
10. Reiablemulti_receive (ACK message, Directmessage, I children with application

members - exduded))
II. update (internal state)

Figure 41: Non-core-set Mserver Application Croup Change Protocol

73

Core-set Mserver Basic Apoication Change
/* core-set mserve" learned ofapplication change by Submit message relayed from
submitting MN or Initiate message from application change coordinator */
I execute Basic Change Pm tocol
2. formmessage (Direct, airrentchange, exclude st)
3. multicast (Directmessage, { children with application members - excluded•)
4. Reliablemulti receive (ACKmessage, Dinectmessage, {children with application

members - exckled))
5. update (exclude-list, internal state)

Figure 42: Core-set Mserver Application Group Change Protocol

Figure 43 is an event diagram showing the actions when a Submit message is lost.

In this case, the Submit message is lost between the LAN mserver and the core-set

mserver. The MI times out waiting for the Direct message from the LAN mserver and

sends a MsgQuery. The LAN mserver resends the Submit message to the core-set and

also sends a Wait message to the querying MI, indicating that the mserver is still pursuing

the application change and the MI should wait for a while longer before detecting a

failure. The core-set now receives the Submit message, completes the processing of the

application change, and propagates a Direct message to the LAN mservers and then to the

MIs. The LAN mservers send an ACK to the core-set, and the MIs send an ACK to the

LAN reserver, indicating successful propagation of the Direct message.

Figure 44 is very similar to Figure 43 except the Direct message is lost instead of

the Submit message. The MI times out waiting for the Direct message from the LAN

mserver and sends a MsgQuery. Instead of sending a Wait message to the querying MI,

the LAN mserver sends a MsgQuery to the core-set. The mserver in the core-set

receiving the query resends the lost Direct message, which is propagated to the MI with

A('Ks returned at every level, and then to the application.

Figure 45 shows the failure of a core-set mserver after processing the application

change, but before multicasting the change directive to the children mservers. Using

message timeouts and retries, the LAN mserver detects the parent mserver in the core-set

74

failed. The MS hierarchy is partitioned at the failed core-set mnerver, causing a partition

in the application group as well.

Submit Inite Commit Direct

2nd-level (ý P 3
core-setnuerven 17 %

coordinator
1st-level mrver r " -

qaMbiniti MI 7
-- tieoUt----ti

Figure 43: Application Group Change With Lost Submit Message

Submit Imtiate Commit Direct

2nd-level (if-3
core-set 3

coordinator I
1st-level merver

-"timsubmnitting MI ti

Figure 44: Application Group Change With Lost Direct Message

Submit Direct

2nd-le-vels 3
core-we 2-oham
cordnt(r change

coordlnator faXre deted
I1st4evel mserver >falluare7

submitting MI timeotr - t:ud at timeout-- ,
ng- tiaeou t - "wti" tine

Figure 45: Application Group Change With Failed Coordinator

75

E. PARTITION RESOLUTION

The final protocol provides the means for the MS hierarchy and application groups to

dynamically reconfigure in the event of network partitions. The reconfiguration method of

the physical hierarchy is fixed, whereas the reconfiguration method used by each

application group is determined by QoS selections made by each MSU when the

application group is initially created.

1. Dynamic Reconfiguration of Physical Core-set

a. Perceived Failures and Partitions

As discussed previously, the actual failure of one or more mservers in a

core-set is indistinguishable from the perceived failure of these mservers caused by an

interruption in the network communication capability. For this reason, all perceived

failures are treated as actual failures. The failed mservers are excluded from further

core-set communications, and the core-set is reformed without the failed mservers. One

partition of the core-set will contain the original parent mserver, the other partitions will

not. This means that the physical hierarchy of mservers is also partitioned. However,

there exists a possibility that the mservers perceived as failed are still functioning. It

would be desirable to have these mservers automatically rejoin the original core-set when

the network partition is repaired. This protocol provides the means for this automatic

reformation of the physical hierarchy.

b. Automatic Reformation Using the Shared Multicast Group

The monitoring protocol, basic change protocol, and broadcast election

protocol provide the means to detect failures or perceived failures of mservers. The basic

change protocol provides the means to process the failure of core-set mservers and reform

the core-set. An example of such a reformation due to a network partition is displayed in

Figure 46, with the reformed subsets of mservers shown in Figure 47. Although the

76

,e,1 2,s 54m 6,u ,m7 i9

m I cordiatorM9 Coordinator
for C (mWfor C2 (mS's
failre) beinsfalure). begin

ACI(timeout ACK dugout

m4 sand .5 selectC 0 m-a7 eginC1 due to higher
mem" fmeoutrank of subject

ml times out, .9 times out,
resends Initiate eedsAll
to m6-m9, to mO-mS, begins
ACK tnscouit ACK tmeou

m2-m7 timeout
aon Coammit send

Ms&_Que'Y,
ml sad m9wend
Wail messages

ml l imes out, k'. L~LJ 9 times out,
resends lnitiate C esends Initiate
to m6-m9, to mO-m5, begins
ACK timeout ACK timeout

mlI detects cmw 80 2= eet
m6-m9 failled, 11(lmO-mS failed,
sends Commit sends Commit
with gossip of with gossip of
the failures the failures

Figure 46: Partitioning of a Core-set

perceived faied mservers have been removed from the core-set membership, they have not

been removed from the membership of the multicast group which the core-set uses to

multicast change-related messages. This provides the means by which an automatic

reformation of the original core-set may be accomplished.

Once the core-set is reformed without the perceived failed mservers,

attempts are periodically made to reestablish communications with the other partition of

77

9®

subgreup 2 wbgroup I

Simultaneous failures Coordinator ml unable to After processing C1 and C2,
detected by ml and m9. send to m6, m, and m9. the set has reformed into two
Two partitions aho exst Coordinator m9 unable to subgroups. Subgroup I is
in the set as shown. send to ml, m2, and W3. larger because Cl had priority.

Figure 47: Partitioning of a Core-set

mservers. These attempts are made by multicasting query messages to the original

core-set multicast address. Current members of the core-set ignore these queries;

however, an mserver in the other partition will respond to a query, if able. If

communication is reestablished within a predetermined timeout period, a simple merge of

the two partitions is conducted, restoring the original core-set, with the exception of any

new additions or deletions to either partition. The group view of the reformed core-set is

set to one more than the higher view number of two formerly partitioned subsets. This is

the same action that would be performed with an ordinary merge of two separate core-sets

of mservers. The original parent mserver is now a member of both of the reformed

subsets, so the physical hierarchy is also automatically restored.

c. Unique Names and Addresses of Partitioned Core-sets

In the event that the partitions of mservers are unable to restore

communciations, the reformed subsets are converted to completely independent core-sets.

Since all core-sets of mservers must have a unique name and multicast address, some

78

method must be used to automatically obtain these _,, que values. To obtain a unique

name, each sub-core-set appends a unique suffix to the original core-set group name. This

suffix value must be automatically derived by each partitioned subset of mserves

independently, and with a guaranteed unique value for all partitioned subsets. The most

readily available attribute that all subsets can use to obtain a guaranteed unique name is

the original group identity (gid) of a significant mserver remaining in each partition. The

lowest mserver gid of the mservers remaining in each partition is appended to the original

core-set group name. In this manner, all partioned core-sets are guaranteed a unique

core-set name. However, all partioned core-sets are still easily identifiable as subsets of

the original core-set, which simplifies the task of manually reconfiguring the physical

hierarchy when the network is repaired.

2. Dynamic Reconfiguration of Application Groups

a Reconfiguration Rules

Any partition of the MS physical hierarchy results in a partition of all

application groups which spanned the original hierarchy. The method of resolving the

partitions of each of the application groups depends on the QoS selection made by the

MSU at the time the application group was created. The MSU uses the size, membership

and name characteristics associated with an application group as the parameters to specify

how partitions will be resolved. These parameters are used by two rules which explicitly

determine how partitioned subgroups will be handled. These rules are:

1. Keep alive any partitioned subgroups that meet a certain condition specified

by the user. Any subgroups which do not meet the condition will be

terminated.

2. Partitioned subgroups will attempt to find and merge with other partitioned

subgroups that have a certain user-specified property.

79

The first rule utilizes a user-specified condition related to group size and/or

membership to determine which subgroups will continue to function. Using group size as

the condition for deciding which subgroups survive, the MSU may specify that all

subgroups terminate upon a partition by selecting a size equal to the original group size.

All partitioned subgroups would be smaller than the original group, and would therefore

terminate, also terminating the application. Similarly, the MSU may specify that all

subgroups survive a partition by selecting a limiting size equal to zero. All partitioned

subgroups would be larger than the selected size and would continue to function. Any

size between zero and the original group size may be selected, permitting subgroups larger

(or smaller) than the specified size to continue to function, and terminating all subgroups

smaller (or larger). The membership of the group may also be used to determine which

subgroups survive. The MSU may specify the condition that a subgroup must have a

particular member or type of member to continue to function. Any subgroups not

containing such a member will terminate.

The second rule utilizes an MSU specified property related to the original

group name or the identity and location of significant members of the group to determine

which partitioned subgroups will attempt to merge. The simplest case is that all

subgroups attempt to merge with all other subgroups of the original group. The property

used is the same base group name common to all subgroups from the original group.

Another simple case is that no subgroups attempt to merge. Use of the null property

ensures that no subgroups attempt to merge with other subgroups. The identity of certain

key members of the original group may be used as the property, also. Partitioned

subgroups attempt to merge with the subgroup containing these key members.

By combining these two rules, a wide variety of partition resolution methods

can be produced. The first rule determines which parwitions survive, and the second rule

determines which partitions attempt to merge. Each rule can also combine multiple

parameters to provide very specific and flexible methods of handling partitions. For

80

example, all subgroups larger than a size of three which contain a particular member type

will survive and attempt to merge with subgroups with the same base group name

containing another particular member type.

81

V. CORRECTNESS ARGUMENTS

In the previous chapters the architecture and protocol descriptions for a global,

decentralized membership service were presented. In this chapter arguments and proofs

are presented to show that the MS protocol performs correctly under all circumstances.

The correct performance of the MS protocol leads to achievement of the desired attributes

of the MS, as discussed in Chapter II. The arguments presented here focus on the

functioning of a single core-set of mservers, treating the set as a group in itself, with the

individual mservers in the core-set as members of the group. The proofs show that

changes to the membership of this group are made in a manner which always maintains

strong consistency of the membership information at all members of the core-set. The

arguments about the correct operation of a single core-set of mservers can then be

extended to the physical hierarchy of core-sets of mservers, and then to the application

groups which utilize the MS, showing that consistent membership information is always

obtained at all application process group members.

The assumptions and definition of terms used in the proofs are listed first, with their

specific implications with respect to the correctness arguments described. These are

followed by a description of the criteria for correctness and a summary of the actions that

the protocol takes to maintain the membership knowledge accordingly. Finally, key

statements about different aspects of the protocol are proven, thus proving the correctness

of the MS protocol.

A. ASSUMPTIONS

As described previously, an asynchronous communication environment is assumed to

exist, providing an unreliable message delivery capability with an unbounded delay, as in

the present best-effort Internet. Thus, network failures that include dropped messages and

82

network partitions are permitted. All member failures are assumed to be crash or fail-stop

[5, 9, 10, 11]. In such conditions, failures can only be perceived, and both actual member

failures and network partitions lead to perceived failures of the members. For this reason,

every perceived failure is processed as an event that partitions the group. Partitions of the

membership of a group are assumed to be acceptable to the user of the membership

service, who may make QoS selections to determine how partitioned groups will continue

to function, as described in earlier chapters. Unlike many other membership protocols,

majority-based decisions are not used by the MS protocol to ensure that only a single

partition survives; instead, complete agreement is required among all surviving members,

leading to the possibility of separate, functioning partitions of any size. Continuous

changes to the membership are allowed; however, the changes are committed one at a

time, and with a specific order in each partition.

B. TERMS AND DEFINITIONS

The specific terms and implications of their use in the correctness arguments

described later are listed below.

1. Change Events

The events that cause a change in the membership are: explicit join and leave

requests by members, perception of failure by the monitoring of members by other

members, and suspicion of failures resulting from member or network failures which lead

to a lack of response during change processing.

2. Change Event Priority

Every change event has an associated priority to enable ordering of virtually

simultaneous changes. Failures have a higher priority than voluntary joins or departures.

Priority of a failure or departure event is the rank, or seniority, of the failed member in the

group. The most senior member always has a rank of 0. When two or more members

initiate a change simultaneously, the coordinator initiating the higher priority change, as

83

determined by the rank of the subject of the change, prevails. In virtually simultaneous

joins, the subjects do not yet have a group rank, so the network address of each subject is

used in place of the rank. The subject with the lower network address will be interpreted

as having a higher temporary rank, and therefore will have a higher priority, joining the

group first,

3. Isolation

A member that perceives another member as faulty ceases all communication

with that faulty member. This leads to the member perceived as faulty also determining

that the other member is faulty, since no communications are received.

4. Gossip

A member that isolates another member gossips about the isolation in the

subsequent communication it has with every other group member. Thus, in the absence of

any other failures, a multicast following an isolation leads to the whole group isolating the

member that was perceived faulty by the sender of the multicast.

5. Group View

This term denotes the ordered membership list maintained by each member m,

and is denoted as View,(m,), where x denotes the view number.

a. Definition

The group view at a member is the set of members that are believed to be

part of the group. It is ordered with respect to the seniority of members in the group and

has an integer, called a view number, associated with it.

b. Remarks

Every membership change alters the number of members in the view at a

member and leads to the installation of a new view identified by the next higher view

number. The number of members in the group may change by more than one in a single

84

view change. The rq-V of a member denotes its seniority in the group, with the most

senior member having 0. Identical views imply identical membership as well as ranks.

6. Group Partition

Let G denote the set of all possible potential and current members of a group. A

partition P of G is defined below.

a. Definition

P is a subset of the all members' set G, such that V m,, mj E P, if View1(m)
and Viewj(m•) are defined, then Vmk, ,'- (eM): mk View,(m,) <:> m, E View,(m),
and all members have the same rank i.. At. views.

b. Remarks

The view associated with partition - is denoted Viewp, and the partition

containing m, is denoted P(m•). Thus, all members in a parition must have identical views.

However, it is possible that there exists an m,, outside ý. partition, but still in every

member's view for a particular partition. Such partitions are called unstablt partitions.

The MS protocol treats such a partition as legal, and eventually removes m, from the

views of all members of the partition. When no such mk exists for a partition, the partition

is called stable. Network and member failures lead to the creation of group partitions in

asynchronous environments.

7. Group Membership Protocol

Using the definitions of the terms above, a protocol is defined to solve the Group

Membership Problem (GMP) as below.

a Definition

A protocol solves the GMP correctly if m change event results in ro.up

partitions eventually.

85

b. Remarks

The above definition of a correct solution of the GMP requires it to satisfy

distinct properties corresponding to the underlined conditions in the definition above.

* El This property, arising from the condition of ev_.Y, requires that a

change event observed by a member is processed despite other virtually simultaneous

change events and failures during protocol execution, including that of the coordinator.

The only situation in which a change event is not processed is in case of catastrophic

occurrences in which all the members with knowledge of the change event suffer real

failures.

* E2 This property, arising from the condition of eventually, permits the

processing of a change event to be suspended temporarily; however, it requires that the

resulting view is always installed at all members of the partition before the change event

occurred after only a finite number of changes are allowed to take place.

* GP This property, arising from the condition of &Loup partitions, implies

identical views at all members of each partition. As per the protocol described, all

partitions resulting from change processing always become stable.

Requirements imposed by the El and E2 properties satisfy the condition

commonly known as liveness in distributed systems and those imposed by the GP

property satisfy safety [5, 27, 28]. Thus, the uniqueness of views and identical ordering of

changes at all operational members is guaranteed by GP.

C. REMARKS ON THE PROTOCOL STRUCTURE

The previous chapter described, in detail, how the protocol handles various change

events. The functions of the different components of the protocol are summarized in the

following paragraph. Unless specified otherwise, the term failure is assumed to imply a

perceived member failure that may have been caused by either a network failure or a

member's failure.

86

Any of the members may initiate a change when it perceives a change according to the

change events described earlier. The change initiator is called the coordinator for that

change and carries out the basic membership change protocol listed in Figure 17. The

normal two-phase change processing is illustrated in Figure 16. The first phase consists of

a multicast of the Initiate message to all the members followed by collection of ACKs

from all members. As specified in Figure 20, the coordinator collects ACKs from all

members it believes to be in the group while, at the same time, trying repeatedly to send

the Initiate message to those that it believes to be present but from whom a response is

not forthcoming due to a failure. The second phase consists of multicasting the Commit

message. The members that do not send an ACK are isolated and gossiped about during

the commit phase.

The non-coordinator's actions of Figure 18 consist of sending the ACK message and

committing the change. Once the Initiate message is received, the receiving mserver

prompts the coordinator repeatedly if a Commit message is not received, as specified in

Figure 15. If a Commit message is not received due to a failure, the mserver expecting the

message starts a broadcast election. As specified in Figure 30, all of the members that

have received but not yet committed the incomplete change elect the highest rank member

as the coordinator. The elected coordinator then resumes processing of this change as

specified in Figure 32. If the coordinator failure was initiated before any member could

commit the change, it is resumed with an Initiate multicast by the elected coordinator. If

at least one member that participates in the election had committed the change, then the

newly elected coordinator resumes the change by sending a Commit message.

Due to the possibility of other changes occurring during a change processing, both the

coordinator and non-coordinators must take additional actions as specified in Figures 25

and 24, respectively. In Figure 25, the specification of Figure 20 is augmented to pennit

the coordinator to handle messages in addition to the ACKs for the initiated change.

Depending upon the message received by the coordinator as it collects the ACKs, it

87

switches to a higher priority change, enters an election, or delays the change It is

coordinating due to a previous change that may not yet have completed.

Similarly, Figure 24 is the augmented version of Figure 15 to handle situations in

which the non-coordinator does not get the expected Commit or Direct message. The

additional actions permit the non-coordinator to either switch to a higher priority change,

start an election if the coordinator has failed, or delay another coordinator that attempts to

install the next view change.

D. CORRECTNESS ARGUMENTS

Based on the protocol summary above and the detailed description given in the

previous chapter, a proof is presented that shows that the MS protocol has all the

properties as identified above for a correct solution to the GMP. Also shown is that a

more refined solution to the GMP defined earlier by Ricciardi and Birman [9] is possible.

I. Claim 1

Change event processing always completes at both the coordinator and the

non-coordinator except when all members, including the coordinator, with knowledge of

the change fail.

2. Proof

Consider a change event change(subject, coordinator) initiated in P.

a. At the coordinator

Although the coordinator makes multiple attempts to deliver the Initiate

message to all perceived members of P, it does not require a predetermined number of

them to respond before it sends a Commit message (line 5, Figure 17). If the coordinator

switches to a higher priority change before it sends a Commit message, the information

about the old change is saved. The old change is reinitiated after all higher priority

changes complete.

88

b. At the non-coordinator

If the coordinator fails, at least one member times out on the Commit

message and starts an election (line 7, Figure 18). The highest rank member with the

change active is elected to resume the change (line 6, Figure 30). The fact that the

election is conducted among those with knowledge of the change ensures that the change

completes even if the coordinator and the only members to have committed the change

fail. This takes care of the invisible commits described by Ricciardi and Birman [9].

3. Claim 2

In any partition, either only one change event proceeds to the commit phase, or

members reaching the commit phase for different change events form separate partitions.

4. Proof

Initially, all members have identical views of the membership (definition of a

partition). In the set of all potential change events, there exists a unique priority order due

to the uniqueness of ranks, which order failures and departures, and network-level

addresses, which order joins. This permits every member receiving multiple Initiate

messages before receiving any Commit message to switch to the highest priority change

that will install the next view. Overlapping of Initiate messages to install successive views

with different view numbers is not possible (line 6, Figure 25).

Suppose a member receives a Commit message for the current change that will

change the view number from x to x+ 1. Suppose this mserver then receives a higher

priority change that also corresponds to a view number change from x to x+ 1. It is

guaranteed that the sender of the higher priority change appears in the gossip

accompanying the received Commit message. This happens because the coordinator of

the lower priority change will have timed out on the coordinator for the higher priority

change and isolated it before generating a Commit message (line 6, Figure 17). This

ensures further partitioning if more than one change events proceed to the commit phase.

89

5. Claim 3

If the coordinator fails after sending the commit message, the two-phase

protocol consisting of an election followed by a commit can solve the group membership

problem correctly.

6. Proof

Begin by proving the contrapositive statement:

The two-phase protocol consisting of an election followed by a commit cannot

solve the GMP correctly if the coordinator fails before sending the commit.

If the coordinator fails before sending the Commit message, it is possible that one

of the members has not yet received the Initiate message for the change. This member

would respond in the election with a (Coord-Fail message that announces that it is not

aware of the change for which the election has been started. This member must receive an

Initia,. message before it can commit the change for which the coordinator failed. If the

('oord-Fail message is used to start the change in place of a separate Initiate message, and

only a (Commit message is sent to complete the change, then the GP property can be

violated, as shown in the example below.

Consider a p rtition consisting of members in,, m ik, (•, and Cb. Let C' initiate

change "a" by multicasting Initiate°, which is received only by m, due to network failures.

(', fails immediately after sending Initiate., and this failure is perceived by in,, which then

starts an election by multicasting Coord_Failo. mi and in, participate in the election, but

('b does not because it has failed. However, before failing, Cb starts another higher priority

change by multicasting Initiateb, which reaches only m, due to network failures. Since

change "b" is a higher priority change, m, drops change "a" as the current change. At this

point, m, perceive C," failed and starts an election by multicasting CoordFail.

90

Throughout this time, m, waits to hear C.'s response to the election for change

"a", which will not arrive due to G's failure before CoordFail_ reaches it. Eventually, m,

times out in the election, determines that it must be the winner, and assumes the

responsibility for completing change "a". m, commits change "a" and multicasts Commilt

to the group with gossip about (,'s isolation. If the Commit. reaches m, and m, after they

have switched to change "b" due to the Coord-Failb message, they will quietly discard the

('ommit. message due to its lower priority. Thus, m, will have committed change "a",

whereas m, and m. will never commit it. This inconsistency violates the GP property and

makes the two-phase protocol incorrect. Thus, the contrapositive statement is proved.

The contrapositive statement proves Claim 3 above. It should be noted that the

failure of the coordinator after sending the Commit message with simultaneous failures of

all members that receive the Commit message is equivalent to the coordinator failing

before sending the Commit message. It is not possible to differentiate between these two

situations, thus the change must be completed in three phases. In the protocol described

in this thesis, the three phases are the broadcast election, initiate, and commit phases.

Thus, the Resume-change procedure of Figure 32 requires the elected coordinator to

complete the change with a Commit message if some member that had committed the

change participates in the election, permitting a two-phase processing of the coordinator

failure. Otherwise, the elected coordinator simply reinitiates the change, providing a

three-phase processing of the original change.

7. Theorem

The proposed group membership protocol is safe and live.

8. Proof

The liveness properties follow directly from Claim 1. The safety property

follows from Claim 2 and 3.

91

VI. MEMBERSHIP SERVICE IMPLEMENTATION

This chapter describes a partial implementation of the MS specified in previous

chapters on a campus-wide set of LANs with UNIX-based workstations. The use and

limitations of the IP multicast capability are described, as well as the needs of the MS not

met by the IP multicast capability. To meet some of these unfulfilled multicasting needs, a

multicast emulation program, called mcaster, was developed. The design and

implementation of this program are described. A complete set of utility functions for use

by the mcaster and MS programs were developed, and are described in detail. High-level

descriptions of the algorithms used to implement mservers and Mls are presented. A

working implementation of the shell of the mserver program is also presented. The

software code for the mcaster program, the utility functions, and the mserver shell

program are listed in the Appendix to this thesis.

A. MULTICASTING

The use of multicast message delivery is essential to the efficient and scalable

operation of an MS. In this section the general concept of multicast message delivery is

explained. Two implementations of multicast facilities are described: the IP multicast and

a specially written multicast emulation program, called mcaster,

1. IP Multicast

A recent addition to the IP suite of services is the IP multicast capability. A

multicast is the multipoint delivery of a single datagram, originated by a single sender and

delivered to multiple destinations which are part of a predesignated multicast group. This

is in contrast to a broadcast, which is a multipoint delivery of a single datagram to all

connected machines, without any capability to limit the scope of the delivery, and a

92

unicast, which is a point-to-point datagram delivery. In effect, a multicast is the

generalized form of message delivery, providing broadcasts at one extreme and unicasts at

the other [29]. Previously, the capability to multicast efficiently was limited to single

LANs, using the LAN hardware protocol. IP multicast provides a similar capability for

machines connected over the Internet, allowing the efficient multicast of a single datagram

to multiple receiving machines which are included in the multicast group, as shown in

Figure 48.

sender o•

receivers

Figure 48: IP Multicast

a. IP Multicast Extensions

Full utilization of the new IP multicasting feature requires an extension to

the currently installed IP implementation on each host machine. The document which

describes how this extension is accomplished [6] defines three levels of conformance to

the specification: Level 0, with no support provided for IP multicast (the current

configuration for most machines), Level I which provides limited support for sending

multicasts but not for receiving multicasts, and Level 2, which provides full IP multicast

93

support. Level 2 requires the implementation of the Internet Group Management Protocol

(IGMP), which manages the dynamic multicast groups which a host must join to receive

multicast datagrams. A depiction of the layered model for IP multicast is shown in Figure

49, provided by reference [6].

I Upper-Layer Protocol Modules

IP Service Interface

EP ICMP IGMP
Module J
Local Network Service Interface

Local IP-to-local address mapping
Network
Modules (e.g., ARP)

(e.g., Ethernet)

Figure 49: IP Multicast Layered Model

Full use of IP multicast of datagrams requires that hosts join a dynamic

multicast group. This group is identified exclusively and uniquely by the 32-bit IP address

used to transmit a datagram to the group. A set of [P addresses has been reserved

specifically for IP multicast. These are referred to as class D IP addresses, with the first

four bits of the address set to '1110' [6]. The range of these class D addresses is from

224.0.0.0 to 239.255.255.255, using the common dotted decimal notation to specify [P

addresses. Addresses between 224.0.0.0 and 224.0.0.255 inclusive are reserved for

multicast routing and maintenance protocols [7], but all others class D addresses are

94

available for use, providing a total multicast address space of over 268 million addresses.

A few of these addresses are permanently assigned, but most are available for transient

multicast groups. Additionally, the IP multicast specification provides a time-to-live (tl)

variable associated with each multicast, controlling the transmission scope of any multicast

datagram. With judicious use of the Il variable, it is possible to use virtually any class D

address for a given host group without worrying about prior assignment of that class D

address.

As described earlier, full level 2 conformance requires implementation of the

IGMP to manage these multicast groups. As shown in Figure 49, IGMP is an integral part

of the IP protocol layer when implemented at a host or gateway. IGMP controls the

relationship between a multicast router and a set of host machines participating in a

multicast group. Multicast routers and host machines use IP datagrams to communicate

status back and forth, similar to the Internet Control Message Protocol (ICMP), which is

used to report errors and provide information about unexpected circumstances between

gateways and host machines [29]. IGMP provides a mechanism for hosts to dynamically

join and leave multicast groups, and for local multicast gateways to monitor the group

membership as well as provide correct routing of multicast datagrams. Hosts and local

gateways use IP multicast datagrams for all IGMP communications, using the "all hosts"

reserved multicast address of 224.0.0. 1, to conduct very efficient communication [6]. The

local gateway maintains status tables to record local group membership of hosts. It also

periodically polls all connected hosts to determine if they are still part of the specified

groups. In this manner, a very efficient management of IP multicast groups is performed.

b. IP Multcast Implementaton

The most common implementation of multicast applications involves the use

of the Berkeley sockets abstraction provided in most UNIX environments for network

I/O. Sockets are a generalization of a UNIX file object, and provide an endpoint for

communications [29]. There are normally three types of communication used for various

95

applications: reliable stream delivery, using SOCKSTREAM type of socket,

connectionless datagram delivery, using a SOCKDGRAM type socket, and a raw type of

communication, using the SOCKRAW type socket. IP multicast supports only the

SOCKDGRAM and SOCKRAW types of sockets, and provides no support for

connected sockets. Additionally, there are several types of system calls for sending and

receiving datagrams, most of which are similar to the system calls for UNIX file 1/O. IP

multicast supports only the sendlo, sendmsg, recvfrom, and recvmsg system calls for

datagram transmission and reception [7]. The sendto and sendmsg datagram transmission

calls require the destination (multicast or unicast) address as an input parameter. The

recvfrom and recvmsg system calls extract the sender's address from the header of the

incoming datagram. Together, these calls provide a very efficient means of combined

unicast and multicast network communications, since the only difference between

communicating with a single host or a multicast group is the address used, and this

address is readily extracted in exactly the proper format to send a reply to the sender for

either a multicast or unicast transmission. The format of the IP address is contained in a C

programming language structure, called sockaddrin, as shown in Figure 50, containing

the address family, port number and IP address for the particular host.

Address Family I Protocol Port
[P address
Unused (0)
Unused (0)

Figure 50: IP Socket Address Structure (Sockaddr in)

96

2. Mcaster program

IP multicasting is a relatively new innovation, and is not widely available at this

time. Due to the very limited implementation of level 2 conformance to the IP multicast

specification on most current computer networks, it was decided to develop a program

that would emulate the IP multicast capability for the currently available unicast

environment. The goal was to develop a program that would emulate the services

provided by IP multicast as transparently as possible; hopefully to the extent that a user or

application program would not need to be concerned with which environment was actually

being used. This involved simulating all of the functionality provided by IGMP at the host

and gateway level.

a. Mcaster Design Decisions

The overall scheme chosen for the IP multicast emulator, called mcaster,

was to have a "daemon" process running at a well-known site, which would act as an

intermediary between the members of a multicast group, providing essentially the same

services as those provided by IGMP, such as* controlling members joining and leaving

groups, and the routing of multicast datagrams to all members of a particular group. The

primary difference between an IP multicast gateway using IGMP and the mcaster program

is that mcaster enjoys none of the hardware support that a router would include -

especially the ability to send a datagram over multiple interfaces at once. The mcaster

program would be running on a standard host computer, probably using a single interface

to the internetwork. This limitation is the most significant difference between an IP

multicast router and an mcaster host computer; whereas a router can send the same

datagram to multiple recipients simultaneously over multiple network interfaces, the

mcaster must iteratively send the datagram over one interface, causing a significant

performance degradation over IP multicast. However, the primary goal of the mcaster

97

emulator was to provide the capability of multicasting, not to match the performance

possible through hardware supported multicasting.

The primary reason for developing the mcaster program was to provide a

multicast capability for use by the membership service under development in environments

which did not support IP multicast. For this reason, the message format used by the

mcaster program was chosen to correspond as closely as possible to the expected needs of

the membership service that it would support. The basic message format for the mcaster

program was designed to also be the basic message format for the MS. This rn

format was previously described in Figure 13 of Chapter IV. Special message types are

reserved for mcaster control messages. Although the mcaster program was developed to

support the MS, it also provides a general multicast capability for any program or user.

The only requirement for the use of the mcaster program is that messages sent by the

application program using mcaster must include a header structure in the format described

above. The mcaster program will then be able to deliver messages of any type to a

designated multicast group.

To make the mcaster daemon as capable as possible, it was decided to

permit each mcasler daemon to support any number of separate groups, each with an

unlimited number of members. The primary data structure chosen to store state

information for all groups supported by an mcaster was a list of groups, each with a list of

members, as shown in Figure 5 1. Groups and their members are dynamically added to and

removed from the lists as needed.

A host computer desiring to join an mcasmer multicast group simply formats

a message with the JOINGROUP message type and sends it to the well-known IP

address of the mcasler. The mcaster processes the join request and responds with a

similar message indicating success or failure of the join request. Leaving an mcaster

multicast group is done in exactly the same manner, with the message type set to

LEAVEGROUP. Any message received by the mcaster which is not a join or leave

98

request is considered to be a message to multicast to the group, and is iteratively sent to

each member of the indicated group using the sendlo socket system call. Whereas IP

multicast groups are exclusively and uniquely identified by their class D IP address,

mcaster multicast groups are identified by the combination of a group name and an

mcaster IP -Address.

group list % g p

Figue 51nMa mer DaaSrcue

next -- next 0-next •

.fmemberse from members

Originallyitwase u ot h act last eu

would be completely transparent to a user or application program; that is, exactly the same

system calls would be made with nearly identical arguments for either multicast

99

environment, with identical results, in a manner similar to that shown in Figure 52. It was

soon realized that there were several deviations from the desired transparency that would

be necessary to make the mcaster program as capable as desired.

Ip multicast

uzaicast

s~ender 1 -,-'I'- '
mcaster

>0]

0 = unicast, IP multicast socket receivers
A = mcaster socket

Figure 52: IP Unicast, Multicast, and Mcaster Using Separate Sockets

The first deviation had to do with the ability of an mcaster to manage more

than one group. Whereas IP multicast groups are exclusively and uniquely identified by

their class D IP address, mcaster multicast groups are identified by the combination of a

group name and an mcaster IP address. Since an mcaster is a daemon process running on

a specific host machine with a unique IP address, all of the groups managed by that

mcaster must share the same group IP address of the host machine. This is in contrast to

IP multicast groups, which may share a common local IP multicast router, but each still

100

have unique IP addresses. The only implication of this deviation is that the group name

had to be included in the message itself, so that the mcaster could extract the group name

and reference the desired group. With IP multicasts, the group name would not be

required, since the identity of the group is implicit in the unique group address.

The second deviation from the desired transparency between [P multicast

and mcaster multicast had to do with the procedure for joining and leaving groups. This

deviation was inherently necessary due to the fact that mcaster emulates the functionality

of IGMP, so a mechanism had to be created to perform the same functions. IP multicast

uses the selsockopt system call to make a socket multicast capable. The sockaddrin

address structure bound to the socket is first loaded with the class D address of the group.

The selsockopt call is then made with the IP_ADDMEMBERSHIP option set [7]. If the

address used is a legitimate class D address, then IGMP adds the calling host to the

specified multicast group. Hosts leaving a multicast group perform the same routine, with

the selsockopt option set to IP_DROPMEMBERSHIP. As described earlier, a host

desiring to join or leave an mcasler group would simply format a message with the

appropriate message type and send it to the host running the mcaster. The functionality

required to join either an [P multicast or mcaster group can easily be encapsulated within a

single procedure, perhaps in a library file, giving the desired transparency between the two

methods of multicasting at the procedure call level. The same holds true for the procedure

to leave either type of group.

A third deviation between the two types of multicasting did not directly

affect the transparency, but could have adverse effects on the performance of the measter

program. Unlike IGMP, once a host joined an mcaster group, no monitoring of group

members is performed. The purpose of this monitoring in IGMP is to detect members no

longer participating in the group and drop them from the membership. It was decided that

this was unnecessary for the mcaster; the lack of a monitoring capability did not directly

affect the ability to multicast nor the desired transparency between the two types of

101

multicast, since the user would normally not be aware the monitoring was taking place at

all. Instead, it was left to the application piogram to correctly leave an mcaster group.

Failure to properly leave an mcaster group would burden the mcaster daemon with

sending extra messages to hosts no longer participating in the group, incr •asing the time

required to multicast to other legitimate hosts in the group, as well as the overhead

required to store the state of members no longer participating in the group. The

functionality required to monitor the status of group members, to detect non-participation,

and to remove non-participating members could be added to the mcaster program at

some future time if desired, but would likely affect the transparency of the mcaster

program to application programs.

The final deviation in the transparency between the two types of multicasting

was the most significant. Due to the sender's IP address being included in the datagram

header, the receiving host can easily extract the sender's address using the recvfrom

system call. Normally this is a very desirable trait, useful for quick and easy replies to the

sender of a datagram. The problem encountered was that the mcaster program acts as an

intermediary for all multicasts between group members, extracting the group name from

the message to reference the proper group, then sends the original message to all

members. In so doing the sender's address in the datagram header is changed to the

mcayser host instead of the original sender, It was therefore no longer possible for a

receiving host to extract the original sender's address from the datagram header; instead

only the mcaster's address could be recovered. To remedy the inability of a receiving host

to determine the original sender of an mcaster multicast, it was required to prepend the

original sender's address to a normal message structure before it was encapsulated in an IP

datagram and sent to all members. An illustration of the extended message format is

shown in Figure 53. There were two choices as to how to handle the extended format

message at the receiving hosts. The first choice was to check every message and decide

whether it was a normal or extended format message, and process it accordingly. The

102

•'41

Addres Fam FWWoW PFot
IP addrus

Rmuud (0)
Unused (0)

vers I checksum

group-name

authentication
group-yiew I sender-gid iRd

msg type I subject aid drar

subject addrrakan
subject rank nex nex
exclude list

ecid liste lealit1ai i
subject list drar

data len I ' rkan

dataa bW

Figure 53: Extended Format Mcaster Message Structure

second choice was to have two separate receiving sockets: one for normal messages and

one for the extended format messages from an mcaster multicast. The latter method was

chosen for the simplicity and clean separation it provided between the two multicasting

methods, as shown in Figure 54. The drawback to the chosen method was that an

application program using an mcaster multicast would have to manage an extra socket at

all levels of the program, virtually eliminating the desired transparency. However, the

amount of overhead required to manage the extra socket is insignificant, and the use of the

extra receiving socket could easily be hidden in a separate receive routine in a library file,

similar to the join and leave procedures used to hide the access to the two multicasting

methods.

The deviations noted above prevent the user from being totally unaware of

which method of multicasting is being used: an IP multicast or an mcaster multicast.

103

member to member unicast

jon leve m--- s mcaster ma

sender join & leave ACK

receivers
0 = unicast, IP multicast socket
A = mcaster socket

= normal message = extended message (for mcaster mcast)

Figure 54: Multicasting Using Extended Format Mcaster Messages

However, it would be impossible to completely remove the awareness of the multicasting

method used, since an IP multicast only works within a limited range of IP addresses, and

the user would have to select the proper IP address to use if intent on using IP

multicasting. The deviations from IP multicasting listed above required by the mcasler

program would not be evident in the normal multicasting of IP datagrams; the user could

confidently select an IP address and name for the multicast group and then use the library

calls described to join the group, send and receive multicast and unicast messages, and

leave the group, without ever being aware of which method of multicasting was being

used. Thus, the desired level of transparency in multicasting methods was achieved.

c. Mcaster Algorithm

The algorithm for the mcaster program is listed in Figure 55 and described

as follows. Line 1 is the initialization of the single socket used by the mcaster program for

104

all 1/O. Line 2 begins the main loop of the program, an infinite loop of waiting to receive

a message, then processing the received message and sending a reply or multicast as

necessary. Lines 3 and 4 describe the process of blocking to receive an incoming message.

Lines 4 and 5 check the received message type for a join request. Lines 5 through 12

perform the joingroup sequence. In line 6, the group list is searched to determine if the

group already exists or not. If the group is not located in the group list, lines 7 and 8 add

the new group to the list. If the group does exist, then lines 9 and 10 determine if the

Mcaster
/* Emulates IP Multicast using iterative unicasts */
1. initialize socket (group address)
2. wait for incoming messages
3. whe message received
4. if(messagetype = JOINGROUP or LEAVEGROUP)
5. if (JOIN GROUP)
6. search group list for group (group name)
7. if(group not located)
8. add group to group list
9. else /*group located*/
10. search member list for member (member address)
I1. if(not already a member)
12. add menber to member list
13. else /* LEAVE GROUP */
14. locate group (group name) or indicate error
15. locate merner (member address) or indicate error
16. if (located)
17. remove member from member list
18. if(member lis is empty)
19. remove group firom group list
20. form ACK message
21. send ACK message to requesting member
22. else /* multicast to all m */
23. for (a members in specified group)
24. if(not sender or loopback)
25. send message to member
26. goto line 2

Figure 55: Mcasler Algorithm

105

member is already in the member list of that group. If it is a new group or if the member

is not already in the member list, then the member is added to the member list of the

specified group in lines 11 and 12. Lines 13 through 19 perform the similar procedure for

leaving a group. Line 14 and i 5 locate the specified member. Line 16 and 17 remove the

member from the member list. If the member list for the specified group is now empty,

lines 18 and 19 remove the group from the group list. Lines 20 and 21 complete the join

or leave sequence by forming and sending an acknowledgment message to the requesting

member. Lines 22 through 25 perform the multicast of any message other than a join or

leave request. Line 24 ensures that the sender does not receive the multicast message if

the no loopback option is selected. Line 26 completes the main loop and returns to line 2

to begin again.

The actual code for the mcaster program is included in the Appendix in the

program file mcaster.c. The utility functions used by the mcaster program are included in

the library files mcaster.h, msutil.h, and msutil.c, also included in the Appendix.

B. MSERVER

The functioning of an mserver process has already been explained from a procedural

point of view. The monitoring and change-processing protocols defined in Chapter IV

each explain the sequence of actions performed by an mserver with respect to one aspect

of the overall operation of the MS and an mserver. The protocols are described in a

procedural form, implying that an mserver performs the complete set of actions that make

up each protocol sequentially before beginning a new set of actions. In reality, each

mserver must continually process incoming messages and changes to the internal state of

the reserver concurrently. It is true that for strong membership consistency guarantees,

only one change will be committed by a core-set of mservers at a time; however, during

the processing of that change, many other events must be registered and processed. These

other events include the reception of messages of all types: some that affect the current

106

change; others that do not, but must be stored nonetheless; and some that require an

immediate response, such as a monitoring query. Other events include the expiration of

timers or a change in the internal state caused by processing the current change

Simply put, an mserver process performs three primary actions: I) it receives and

stores incoming messages, 2) it changes the internal state in response to internal events or

incoming messages, and 3) it sends outgoing messages. The incoming and outgoing

messages may be unicast or multicast, depending on the circumstances. In this section, the

operation of an mserver process is described in detail from an implementation viewpoint.

1. Internal State and Data Structures

Each mserver process has a dual personality: it is a member of a core-set of peer

mservers, as well as the parent of a child-set of mservers. For this reason, the set of data

structures and variables used to maintain the internal state of an mserver must be

replicated to support both identities. Additionally, each mserver must maintain

information about all application groups that it supports. Figure 56 illustrates the data

structures and variables used to maintain the internal state of an mserver. Each of these

data structures will be described in detail in the following paragraphs. Table 6 lists the

variables used to maintain the mserver's internal state and their meaning.

As shown in Figure 56, an mserver maintains two core-tables; one for the peer

core-set, and one for the child-set. The core-tables are used to maintain the membership

information for each the mserver's core-sets. The index into the table is the gid of each

mserver in the core-set. The IP address of each mserver is stored to allow unicast

message addressing. The rank of each mserver is maintained, with a rank of 0

corresponding to the highest rank and most senior mserver in the core-set. The cw and

ccw variables are integer pointers representing the clockwise and counterclockwise

neighbors of each mserver. These links represent the pairwise monitoring-set; the

clockwise neighbor is the monitor and the counterclockwise neighbor is the monitored

mserver. It is important that all mservers know the exact monitoring relationship of all

107

core-set child-set applications

groups B

group variables

failures failures

requeszg request

core-set state variables child-set state variables

Figure 56: Mserver Data Structures and Internal State

other core-set mservers, so that the correct monitoring arrangements can be made by all

each time the core-set membership changes. Figure 57 illustrates the structure of these

core-tables, and Figure 58 illustrates a core-set of mservers corresponding to the core-set

listed in the core-table of Figure 57.

Each mserver maintains four lists for each side of internal state: an mserver

failures list, a physical change requests list, an application group change requests list, and a

list of all application groups supported by that core-set. The failures list is a list of all

mservers that have been detected failed by this mserver, but not yet processed out of the

core-set. The format of the list is the same as the exclude-list and subject-list shown in

Figures 13 and 53. The physical change request list is shown in Figure 59. This list stores

all of the relevant change data for each physical change request received at an mserver.

The data is copied from the received message and a new entry is added to the list of

pending changes. The application group change requests list functions in the same

manner as the physical change requests list, but is maintained separately to simplify the

prioritization of pending physical and application change requests. The list of application

108

• me ==m mmm • mmlnmM • !! |

TABLE 6: MSERVER INTERNAL STATE VARIABLES
Note: Separate copies of all state variables are maintained by each mserver for
the core-set and child-set of which it is a member.

Variable Description

groupname name of core-set

groupaddress address of core-set

group size size of core-set

group view current group view of core-set

authentication used for core-set security

mygid group identity number of this mserver

cw clockwise neighbor (monitor)

ccw counterclockwise neighbor (monitored)

coretable pointer to core-table
exclude-list list of mservers to be excluded from core-set due to failure

subject list list of subjects for a Merge or Split, or failed mservers

current change pointer to structure for data about current change

previous change pointer to structure for data about previous change

failures list of failed core-set mservers waiting to be processed

requests list of pending physical change requests received by core-set

appchanges list of pending application change requests submitted to mserver

timeouts timeout vector (recv, query, reply, messg, ACK)

retries retries vector (reply, messg, ACK)

expectedtype message type expected for current processing

responses count of number of responses (ACKs and Coord Fails)

appgroupjlist ilist of application groups supported and relevant data

groups is illustrated in Figure 60. The fields in each entry in the application group list

represent all of the data that the mserver must maintain for each application group

supported. By keeping the data stored minimal, scalability is maintained. The

groupname is the string name for the application group. The core-set and nameset

fields are boolean variables to indicate whether this mserver is in the core-set or name-set

109

gid address rank cw ccw flau f52
0 131.120.50.103 6 1 5
1 131.120.50.110 0 3 0
2
3 131.120.50.105 1 3 I
4
5 131.120.50.108 5 0 7
6 131.120.50.106 3 7 8
7 131.120.50.112 4 5 6
8 131.120.50.115 2 6 3
9

MAXTBLSIZE

Figure 57: Mserver Core Table

6

Figure 58: Mserver Core-set Corresponding to Core Table in Figure 57

110

~~~~~r n -.. . .0 0



requests ls eus

group vh-w I smder~gl grupviw fdri

Sfubjedt adir _ _ _ _ __Subject id,
haajectramk uuahiecta sbWrm
eiclade-I A ecaw excludebtM

itt list!.. ashLiat ea excil ist I.. I bLft lea idet" amLUOsttI bo e.-
____ e_________ mbe_ sbject Im
___ __ ____ __ __ data lea

daftdaftdo"a

@aaidr adr
net ext

Figure 59: Mserver Requests List

ggroup list 

last groiup

I' -nameu 
name

core set core set core set
name set name set name set

t members memibers members
renet of I net wnext

Figure 60: Mserver Application Groups List



of the application. The members field is a list of child mservers with application members

in their hierarchy. Only these child mserver will be included in the message exchange and

change processing for the application group which they support. Other mservers will not

be impacted by the changes to application groups which they do not support, with the

exception of processing core-set changes if they happen to be in the core-set for the

application. Figure 61 shows the data structure used to store information related to the

current and previous changes. The currentchange structure maintains a separate exclude

list from that included with the mserver's internal state, so that any changes made to the

exclude list while processing a change that is subsequently dropped do not affect the main

exclude list of the mserver. When the change is committed, the main exclude list for the

core-set is updated with the new information contained in the currentchange exclude list.

2. Algorithm and Explanation

The general algorithm for an mserver is listed in Figure 62. As described

previously, the algorithm for the mserver allows continual processing of incoming

messages and internal events, even while a current change is being processed. Outgoing

current-Change previous change

coordinator coordinator
sAbj_jgid subjjid
ubLaddr subLaddr

Ssubt rank subi-rank
group name group name

ttype . type

exclude list
exsdlist fen

Figure 61: Mserver Current and Previous Change Storage

112



messages can be sent at the same time as well. The line-by-line description of the

algorithm follows.

The mserver is started with a command line call, as shown in the header of Figure

62. The group address is only included if this mserver is the first to join a new core-set,

thus creating the core-set. Lines I and 2 make system calls to obtain information about

the host computer and core-set multicast group. These calls are made with the name as an

Mserver (group name, [groupaddress])

/* group_name is the string name of the core-set, group address is an optional IP

address of the multicast group for the core-set, included only when a new
core-set is being created */
/* Initialize mserver */
1. obtain-info (host_name, host_address)
2. obtain ý o (group name, groupadress)
3. initialize sockets (ms, mc)
4. initialize (internal state)
5. set timers (rev, quey, reply, messg, ACK)
/* Join core-set */
6. send-message (Join-message, group address)
7. messg = Reliable_ receive nit ressage, MsgQuery_message)
8 if(messg = *mtnessage) /* successfi join */
9. join mcastroup (group nm group address)
10. update (ter state)
11. else /* upsjcJ join*/
12. exit and report error
/* Begin main processing loop */
13. for (, ;) /* infinite loop */
14. receive message (messg, recv_timeout)
15. update (internal state)
16. processmessage (messg, internal state)
17. process lsts (internal state)
18. process trneouts (internal state)

Figure 62: Mserver Algorithm

113



input argument, and return the respective address. The core-set multicast address is

obtained from a locally maintained, well-known file, mapping group names to multicast

addresses in the local environment, if the group already exists. If the group does not exist,

the procedure registers the group name and corresponding groupaddress in the file.

Lines 3 initializes the two sockets used by the mserver: ms for incoming unicast messages

and all outgoing messages, and mc for outgoing multicast messages (to utilize the mcaster

utility, if needed). Line 4 initializes the internal state of the mserver, represented by the

data structures and variables for each part, as shown in Figure 56. Line 5 initializes all

timeout variables used as timers for the reception of messages.

Now that the mserver has been created and initialized, lines 6 through 12 control

the mserver's attempt to join the desired core-set. If a new core-set is being created, there

is no need to send and receive messages to join a core-set. The mserver simply updates

the internal state to reflect that it is the only mserver in the new core-set. If the core-set

already exists, a join request message is sent to the core-set multicast address in line 6,

followed by a Reliablereceive of the Initial Parameters message from the core-set in line

"7 The Initial Parameters message contains the complete state of the sending mserver,

which was the coordinator for the join request of this new mserver to the core-set. Since

the state of the coordinator is also the state of all other mservers in the core-set, the

joining mserver receives the complete state of the core-set in this message. An illustration

of the Initial Parameters message is shown in Figure 63. If the Initial Parameters message

is returned, the mserver joins the multicast group for the core-set. This is a separate

action from joining the core-set; the core-set must have been joined first before allowing

the new mserver to become a member of the core-set multicast group. If for some reason

the joining mserver is unable to join the multicast group, it will exit and return an error

code to the caller. The core-set will soon detect the new mserver failed and remove it

from the group automatically.

114



After successfully joining the core-set, the mserver begins the main loop of

operation, shown in lines 13 through 18. The mserver continually repeats a cycle of

receiving any incoming messages, processing the received message, then processing any

pending failures or requests, and finally checking the internal timers to determine if any

vets checksum

group-name

authentication
groupview coordinator gid
INIT STATE I subject gid

subject addr
subject rank
exclude list

exd list len 0
NULL

data n I
No. of messages in request list

Coordinator's core-table

Coordinator's request list
(if any)

Figure 63: Initial Parameters Message Format

messages have exceeded their timeouts. In line 14 a timed receive function is used; the

process is idle waiting for any incoming message or the timeout period to elapse. This is

similar to a combination of the select and recvfrom UNIX socket calls. The timeout for

the receive function is a relatively short period, and in the absence of any incoming

messages, acts as the clock for the mserver. Each iteration of the main loop represents

115



one "tick" of the logical event clock for the mserver. All other timeouts used are multiples

of this basic receive timeout, so that messages are timed in terms of a real clock as well as

the logical event clock. When the receive function returns, either a message has been

received, or the timeout period expired. If a message was received, it is processed in line

16. The message is decoded, and the appropriate action taken depending on the message

type.

Next, the failures list, requests list, and application group requests list are

checked for pending items. The lists are checked this order, so that the failures list has

priority. Any mserver failures queued are "batched" and processed as one change to the

core-set membership, with the rank of the highest ranking subject used for the change

priority. Upon completion of processing the failures list, the requests list and application

group requests lists are checked, in that order. Only one pending change is processed

each main cycle; the request at the head of the selected queue is copied into the

currentchange structure and processed as the current change. The request is not

removed from the head of the queue until the change is committed, so that if the change is

dropped, the request will remain at the head of the queue. Once the change is committed,

the change data is copied from the currentchange structure to the previous-change

structure.

Finally, all timers are checked to see if any expected message has exceeded the

associated timeout period. If any timers expired, the internal state is updated, messages

are sent as needed, and the timers are reset. This completes the main loop processing,

which is then repeated continually. The code for a partial implementation of an mserver

process is included in the Appendix in file mserver.c.

C. MEMBER INTERFACE

As discussed previously, the primary purpose for the MI is to act as an interface

between the application and the MS hierarchy. The MI accepts membership change and

116



information requests from the application processes and relays the requests to the LAN

mservers for processing. When the change has been processed, the MI accepts and relays

the change data to the application processes. The MI must also respond to periodic

monitoring queries from the LAN mserver.

1. Internal State and Data Structures

The MI maintains a limited amount of information about the MS hierarchy and

the application process group members that it supports, as shown in Figure 64. The only

MS hierarchy information stored is the name and IP address of the LAN mserver. The MI

maintains a list of the application groups that it supports This list is very similar to the

application groups list maintained by mservers, except the MN is not part of any core-set or

name-set. Additionally, the MI must maintain a list of all members running on the host

computer for each application group. Information about other member processes is

obtained by requests to the MS hierarchy. An optional QoS feature would allow the MI

to store limited information about all application member processes for a particular

application, thus increasing the storage requirements at the host computer, but greatly

reducing the latency to obtain member information.

preup vadiabks
mumer variabes

Figure 64: MI Data Structures and Internal State

117



2. Algorithm and Explanation

Figure 65 lists the algorithm used by the MI. The algorithm is similar to that of

an mserver, but much simpler. The same idea of a continual cycle of receiving messages,

processing the messages, processing pending requests, and processing expired timeouts is

performed. The timed receive function is used again, so that receive cycles act as the

internal event clock. The initialization in lines 1 through 1I is very similar to that of an

MI (mserver name)
/* mserver name is the string name of the LAN mserver */
/* Initialize Ml */
i. obtain inf (hostnamW , host address)
2. obtain-info (nm vername, msever_address)
3. initialize socket (ms)
4. initialize (internal state)
5. set timers (recv, messg)
/* Register with LAN mserver */
6. send_message (Join-message, mserveraddress)
7. ssg = keiable receive (ACKmessage, Ms&_Query_mesa)
8 if(mes-g ACK message) /* sccessfd*/
9. update (ntena state)
10, else /* */
11. exit and report error
/* Begin main loop */
12. for (; ;) /* infinite loop */
13. receivemessage (messg, recv timeout)
14. update (inter state)
15. processmessage (mess& intena state)
17. process_lists (internal state)
18. processtimeouts (internal state)

Figure 65: MI Algorithm

mserver, except the MI does not join a group, but instead registers with the LAN mserver.

The main loop of lines 12 through 18 is nearly identical to that of an mserver, except that

there are many fewer events to process at each stage. The only messages received by an

118



MI are application membership change and information requests, Direct messages from

the LAN mserver, and monitoring Query messages from the LAN mserver. The only

messages that an MI sends are Submit messages for application change requests, Reply

monitoring messages to the LAN mserver, and configuration messages to the MS. The

MI only needs to track two timers: the main receive timer and a message timer for

expected responses Incoming requests are added to a pending requests list if a current

request has been submitted to the LAN mserver. As each change request is completed

with the reception of a Direct message, a new request is taken from the head of the queue

and processed.

119



VII. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This thesis presented a globally scalable, fully decentralized group membership service

which provides the framework for distributed applications of any size and distribution. A

complete description of the architectural design and protocol specifications were

presented, and an implementation of the membership service was described.

The most significant contribution of the group membership service described herein is

the total scalability. The MS provides a consistent suite of services to client applications

distributed on any scale, from a single LAN to the worldwide internetwork. No other

membership protocol or service provides this capability. Other noteworthy contributions

include the decentralized and efficient nature of the MS, and the concept of providing

numerous user-selectable Quality of Service options to tailor the MS to the needs of each

client application.

B. FUTURE WORK

Although a great deal of work was accomplished ýn the design and partial

implementation of the MS described in this thesis, much more work remains to be done.

First, to demonstrate that the MS is truly scalable to global proportions, a working

implementation of the complete MS must be developed and installed on progressively

larger scales. Second, complete performance analysis of the operation, overhead, network

constraints, service latency, and functionality of the MS must be accomplished. Third, a

complete formal specification of the protocols used by the MS must be accomplished, with

a reachability analysis conducted to demonstrate formally correct operation. It is

recommended that an extended communicating finite state machine (CFSM) modeling

120



method be used, such as Systems of Communicating Machines (SCM) [30], for the formal

specification. Finally, the MS must be modified to take advantage of the reliable,

high-speed networks which are currently being deployed. Advances in network

technology, such as ATM (Asynchronous Transfer Mode) and Sonet (Synchronous optical

network), provide a different network model than the conventional IP-based model used

for the design of this MS. The conceptual design described in this thesis remains ,alid for

any network model; however, by adapting the protocol specifications to take advantage of

reliable, high-speed networks, a more efficient and capable version of the MS can be

realized.

121



APPENDIX

* MCASTER.H ver 1.0

* Header file for MCASTER.C

* Program to emulate IP multicast in a unicast environment.

* Written by Dave Neely, March 1994.

* Modified: 4/23/94

#define MC PORT 3000

#define JOIN GROUP 120

#define LEAVE GROUP 121

#define JOIN ACK 130

#define DUPMEMBER 131

#define NEGJOIN 132

#define LEAVEACK 140

#define NOGROUP 141

#define NO MEMBER 142

#define NEG LEAVE 143

#define NO LOOP 0

#define LOOP 1

122



"* MSUTIL.H ver 1.0

"* Header file for Membership Service (MS) utilities
,

* Written by Dave Neely, March 1994.

* Modified: 4/23/94

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <net/if h>

#include <sys/ioctl.h>

#include <netinet/in.h>

#include <string.h>

#include <netdb.h>

#include <sys/time.h>

#define VERS 1 /* version number */

#define MS PORT 2900 /* unicast & IP multicast */

#define MAXGROUPNAME 32 /* chars */

#define MAXMSGLEN 1024 /* 1kB */

#define SEC 1000000 /* I million usec */

#define TRECV I*SEC /* recv cycle timeout */

#define TREPLY 5 * TRECV /* incoming reply timeout */

#define TMESSG TREPLY /* incoming messg timeout */

#define TACK TREPLY /* incoming ACK timeout */

#define TQUERY 60*SEC /* timeout to send another query */

#define MAXTBLSIZE 250 /* max size of group table */

#define MAXTIME Ox7ffffff /* to reset timeouts */

#ifdef 1FF MULTICAST

#ifndef MULTICAST

#define MULTICAST

123



#endif
#endif

/* monitoring message types */
#define QUERY 0 /* monitoring query */
#define REPLY I /* monitoring reply */

/* mserver INITIATE message types */
#define MJOIN 10 /* mserverjoin group*/
#define MLEAVE I I /* mserver leave */
#define MSPLIT 12 /* mserver split group */
#define MMERGE 13 /* mserver mergegroup */
#define MADDPARENT 14 /* mserver add parent */
#define MDELPARENT 15 /* neserver delete parent */
#define MSTATSS 16 /* reserver group stats - short */
#define MSTATSL 17 /* reserver group stats - long */
#define MFAIL 18 /* mserver fail */

#define MMULTI_FAIL 19 /* multiple mservers fail */
#define MCOORDFAIL 20 /* coordinator fail */

/* change sequence message types */
#define ACK 21
#define COMMIT 22
#define WAIT 23
#define MSG-QUERY 24
#define INIT 25

/* external physical requests to core-set */
#define MJOIN_REQ 30 /* reserver join.group request */
#define MLEAVEREQ 31 /* mserver leave-request */
#define MSPLITREQ 32 /* mserver split_.group request */
#define MMERGEREQ 33 /* mserver mergegroup request */
#define M_ADD_PARREQ 34 /* mserver add parent request */
#define MDELPARREQ 35 /* reserver delete parent request */

124



#define M_STATSS REQ 36 /* mserver group stats - short /

#define MSTATSL REQ 37 /* mserver group stats - long */

/* application group INTITIATE message types */

#define AJOIN 70 /* app join group */

#define ALEAVE 71 /* app leavegroup *1
#define A_SPLIT 72 /* app split..group */
#define A_MERGE 73 /* app mergesgroup */

#define ASTATS_S 74 /* app group stats - short */

#define ASTATS_L 75 /* app group stats - long */

#define SUBMIT 76 /* app change submission */

#define DIRECT 77 /* parent's change directive */

/* application group request message types *1

#define AJOINREQ 80 /* app joingroup request */
#define A_LEAVEREQ 81 I* app leave__.group request */
#define A_SPLIT_REQ 82 /* app split_.group request */

#define A_MERGE_REQ 83 /* app mergegroup request */

#define A_STATS_S_REQ 84 /* app group stats - short */

#define ASTATS_L_REQ 85 /* app group stats - long */

struct tableentry ( /* member's entry in set table */

u long addr; /* IP address of member */

u short rank; /* member's rank */
u_short cw; /* gid of clockwise member (to "left") */
u_short ccw; /* gid of counterclockwise member */

u_char flag 1; /* status flag for each member */

u_char flag2; /* status flag for each member */

s s

struct gidentry { /* used for gid lists */

u_short gid; /* member's group ID */

u short rank; /* member's rank */

u-long addr; /* IP address of member */

125



struct gid entry *next;

struct message {/* to build and receive messages ~
u-short vers;,
int checksum;
char group name[MAXGROLTPN AME];
u_short group-view,
long authentication;

u-short sender~gid;
u~short msg tye

u-short subjectgid;
u~long subject-addr;
u-short subject-rank;
struct gid entry *exclude-list;
u-short cxci -list -len;
struct gid_ entry *subject_list;
u-short subj list -len;
char * data;
int data-len;

messg,

struct group statel I* core and child set internal state *

char group name[MAXGRQUPNAME],
struct sockaddr-in group__addr;
u-short group-size;
u-short group_vyiew;
long authentication;

u-short mygid;
u-short cw;

u-short ccw;
struct table-entry table;
struct gid-entry * exclude-list;
u-short exci-list-len;

126



struct gid-entry *subject-list;
u-short subjjist-len,
char *data,
int data-len;
struct change data * current change;

struct change data *prevou -chanIge;

struct gid entry *fkilures,
struct gid-entry flast-failure,

struct messg entry * requests;

struct messg entry * last request;
struct messg entry *app requests,
struct messg entry *last app request;
struct timeval recv-timneout;

struct timeval queryjtimeout;
struct timeval replytimeout;
struct timeval messg tmeout;

struct timeval ACK-timeout;

u-short r-retries;

u-short m-retries;
u-short a-retries;
u-short ACK-count;

u-short changeunderway;
u-short elect-coordinator;

struct changejlata( /* current and previous change info *

u-short coordinator;
u-short subj~gd;
ulIong subject addr;

U-short subj rank;
u-short group namne[MAXGROUPNAME];

u-short type;

127



struct messg entry P / entry in requests lists/
char group name[MAXGROUPN AME];
u_short group -view-,
long authentication,
u-short sendergid;
u_short msg type;
u-short subjectjid;
u-long subject-addr;
u-short subject-rank;
struct gid-entry *exclude-list;
u-short excl -list -len;
struct gid_.entry *subject-list;
u-short subj list_len;
char * data;
int data-len;
struct messg_ entry *next,

1 28



*MSUTIL.C ver 1.0
5Utility procedures used by Membership Service programs.

5int init-socket(sin, port)
* mt join mcast~group()

* void leave mcast-group()
* ift addrcmp(addr I, addr2)
* void form mnessg(messg, group, authentication, groupview. sender, type, subject.

* cexci-list, cxci_lIist-len., subj list. subj~list_len, data, data-len)
* mnt send messg(socket, message, dest)
* int recv~messg(ms_socket, mc-socket, message, sender, timeout)
* void set-timeout()

* int timed outo
* int search__gid-list(gid -list, gid)
* int addgid,_entry(&gid list, gid)
* int copygidiist(gid -list, &buffer)
* mnt extractgidlfist(buffer, &gidjlist, list-len)
* void deletegid list(&gid list)
* void print in~addrin~addr)

* void print_sock-addr(sin)
* void print_sock_info(s, sin)
* void print hostent(hp)

* void print messg(messg)
* void print..gd list(gid lis-t),

* Written by Dave Neely, March 1994.

* Modified: 4/26/94

#inciude "msutil.h'"
#include "mcaster~h"

129



int init-socketo;
int join_mcast~groupo;
void leave-mcastVgoupo;

int addrcmpo,
void form-messgO;

int send_ messg();
int recv-messgo;
void set-timeoutO;
int timfed outo;
int searchgid~listo;
mnt addgidentryo;
int copy..gdjisto;
int extractgidlisto;
void delete.gd~listo;

void print_in_addr();
void print-sock_addrO;
void print-sock-infoo;
void print -hostento;

void print messgo;
void printgid-isto;

/* global variables */

struct sockaddr-in sin, mcsin; 1* socket addresses *

struct sockaddr -in group__addr; /* group mcast address *

int ins, mc; /* IP socket fd's ~

#ifdef MULTICAST
struct ipmreq imr; I* IGMP control ~

#endif
int debug = 0; 1* I = enable diagnostic prints *

*Initialize socket address structure

int mnit-socket(sin, port)

130



-M7-7 -WWqwr7 - 7.PO ... M.

struct sockaddr-in sin 1* socket address ~
u-short port,

rnt s; /* socket fd *
int one= 1;
bzero((char*)&sin, sizeof~sin));/* clear address structure and initialize *

sin.sin -family = AF_INET;
sin. sin~port = htons(port);
sin~sin-addr.s-addr = htonl(INADDRANY);

/* open and bind UDPIIP socket *

if ((s = socket(AF INET, SOCKDGRAM, 0)) < 0)4
peffor("can't open socket");
exit(- I),

if (setsockopt(s, SOL_-SOCKET, SOREUSEADDR, &one, sizeof~one)) < 0)
perror("can't make socket reuseable");
exit(- 1);

if (bind(s, (struct sockaddr *) &sin, sizeof(sin)) < 0)
perror("can't bind socket");
close(s);
exit(-l1);

return s;

*Join IP multicast group or mcaster group (if unicast only).

int join mcast..goup(group name, group_ str addr)

131



char *group name; /* group string name
char *group~str-addr; /* IP dot address *

u-char loop = 0, /* turn loopback option off ~
int len, sent;
struct sockaddr in from; I* to receive sender's address ~
struct timeval timeout; /* time to wait for response ~

timeout.tv-sec =30*SEC; /* wait max of 30 seconds ~
timeout.tv-usec = 0;

I* set up group address structure ~

group addr. sin -family = AFNET;
group addr. sin~port = htons(MS_-PORT);
group__addr.sin-addr. s-addr =inet-addr(group~straddr),
printf("Group Address An");
print_sock-addr(groupaddr);

#ifdef MULTICAST /* join IGMP multicast group ~
imr.imr-multiaddr.s-addr = met-addr(groupstraddr);
pnintf("group address: %sAn", mnet_nitoa(imr.imr-multiaddr.s-addr));
imr.imr-interface.s-addr = htonl([NADDR_ANY);
if (setsockopt(ms, IPPROTOIP, IPADDMEMBERSHIP,

&imr, sizeof(imr)) < 0)
perror("can't join group");
return NEGJOIN;

if (setsockopt(ms, IPPROTOIP, II'_MULTICASTLOOP,
&loop, sizeof(loop)) < 0) 1

perror("can't disable multicast, Ioopback");

printf("group %sjoined\n", mnet-ntoa(imr.imr-multiaddr.s-addr));
return JOINACK;

132



-... . . .7

#else /* join MCASTER multicast emulator group .

/* generate and send join request message to MWASTER/
form messg(&mnessg. group name,O,O,O, JOINGROUP,O,O,O,O.,O,,O);
ten =sizeof~messg);
printf("SENDING JOIN MESSAGE~n'),
pnintf("message to send: \n");
print-messg(messg).
sent = send -messg(ms, messg, groupaddr);
printfi"*/d bytes sent\n", sent);

/* wait for ACK message from MCASTER ~

if ((sent = recv-messg(ms, mc, &messg, &frorn, timeout)) < 0)
printf('error in message rec'd\n"),

else I
printfV"MESSAGE RECEIVED:\n");
printf("O/od bytes reeve~" sent);
print messg(messg);
printf("sender:\n');
print-sock-addr(from);

#endif
return messg.msg_ type;

*Leave IP multicast or mcaster group.

void leave-mcast~group(group~nane)

char * group name;

mnt len, sent;
short message type;

133



struct sockaddr-in from; /* to receive sender's address ~
struct timeval timeout.

set-timeout(&timeout. 30*SEC); /* wait 30 seconds *

1* leave group *I
#ifdef MULTICAST

if (setsockopt(s, IPPROTO_-IP, IPDROPMEMBERSHIP.
&irnr, sizeof~struct ip mreq)) < 0)

perror("can't leave group");
exit (4 ),

else
printf("group %s leftin", group name);

#else
/* generate and send leave request message to WCASTER *

formn-messg(&rnessg, group_nanie,0,0,0, LEAVEGROUP,0,0,0,0,0.0,0.0);,
len = sizeofimessg),
printf("SENDING LEAVE MESSAGE:\n");
printf("message to send: \n");
print messg(messg);

sent = send_messg(ms, messg, group_addr);
printf('0 /od bytes sent\n", sent);

/* wait for ACK message from WCASTER ~

if ((sent = recv -messg(ms, mc, &messg,&from, timeout)) < 0)
printf("error in message rec'd\n");

elseI
prnAntf"ESSAGE RECEIVED:\n");
printf("%d bytes received\n", sent);
print messg~messg);

printff"sender:\n");
print-sock addr(from);
message type = ntohs(messg.msg_type);

134



printf("message_type = %d\n", message typ);
if ((strcmp(messg.group name, group_ name)) I

(!(message type == LEAVEACK)))
printg("unable to leave group: error O/od\jn", message_type).ý

#endif

*Compare two sockaddr -ia structs.. return I if same, 0 otherwise.

int addrctrnp (addrl, addr2)

struct sockaddr in adar I,
struct sockaddr-in addr2;,

return ((addrl .sin-family == addr2.sin-family) &&
(addrl .sin~port == addr2.sinjport) &&
(addrl sin-addr.s-addr == addr2.sin-addr.s-addr));

1* addrcmp *

*Compose message. Copy all integer values, point list and data
*pointers to appropriate list or data string.

void torm messg(messg, group, auth, GV, sender, type, subject, exci-list,
exci-list-len, subjjlist, subj_list-len, data, data-len)

struct message *messg;
char *graup; 1* group string name ~
long auth; /* authentication nurOber ~

u-short GV; /* group view number *

135



u-short sender; /* sender gid ~

u-short type, /* message type ~

u-short subject, /* subject gid */
struct gid-entry *excl-list; /* gid exclude list *

u-short exci-list-len;,
struct gid -entry *subjjlist; /* gid subject list *

u-short subj list len;
char * data;
u-short data-len;

I
/* bzero((char *)messg, sizeof(*messg)); *

messg->vers =VERS;
messg->checksuni = htons(OxfflT),

strcpy(messg->group name, group),
messg->authentication =htons(auth);

messg->group__view =htons(GV),

messg->sendergid =htons(sender),

mess~g->msg type =htons(type),

messg->subject_.gid =htons(subject);

messg->exclude-list = excl-list;
messg->excl list-len = htons(excl-list-len);
messg->subject -list = subjjlist;
messg->subj list-len = htons(subjjlist-len);
messg->data = data;
messg->data-len = htons(data-len);

"* Send a variable length message "messg". The message may contain 2
"* lists of gids, and data field. These are appended to the buffer,
" 'messgbuf, used to store the overall message. Returns the number

"* of bytes sent.

136



*~~~~~~7 R". - **4

int send messg(s, messg, to)

int S, /* socket fd *
struct message messg;
struct sockaddr-in to,

int sent,
int msglen = sizeof(messg) + (ntohs(messg.excl list ten) +

ntohs(messg.subjjlist len))*2 + ntohs(messg.data-len);
char *messgbuf, *mp; P~ message buffer and pointer ~

char *datastr, P* for diagnostic prints '
int i.
u-short val, *up, /* for diagnostic prints ~

if (debug) printt("messglen to send: %d\n", msglen);
if (!(messgbuf = (char*) malloc (msglen))) (

perror("unable to create message buffer");
return -1;

/* copy messg into outgoing buffer *

bzero(messgbuf, msglen), /* clear buffer *

bcopy((char *)&messg, messgbuf, msglen); P~ copy messg into buffer *

mp = messgbuf + sizeof(messg); P* skip over messg ~
/* append excl & subj lists and data */
copygid list(messg. exclude-list, &mp);

if (debug) I P* print exci-list string ~
printf("excl list to send: ");
for (i0O; i<ntohs(messg.excl -list ten); i++)

up =(u~short *)(mp +1i*2);
printf(" %d ", *up);

printfil"\n");

137



mp += (ntohs(messg.excl -list -len)*2), /* skip 2* number of gids ~

copygidlist(messg. subject-list, &mp);

if (debug) ( /* print subj list string ~
printf("subj list to send: ")-,

for (i=O; i<ntobs(messg.subj list-len); i++)

up = (u -short *X(mp + *)

printf(" %d ", *up),

printff"\n");

mp += (ntohs(messg.subj list -len)*2); /* skip 2* number of gids *

bcopy(messg. data, mp, ntohs~nessg.data-len));

if (debug) ( /* create temporary data string to print messg. data *

if (!(datastr = (char*) malloc (ntohs(messg data-len)+ 1)))

perror("unable to create data string");

bcopy(mp, datastr, ntohs(messg. data -len));
datastr[ntohs(messg.data-len)] = NULL; /* make string ~

printf("data to send: %s\n", datastr);
free(datastr),

if ((sent = sendto(s, messgbuf, msglen, 0, (struct sockaddr *)&to,

sizeof(struct sockaddr))) != msglen)
perror("error in message length sent");

free(messgbuf);
return sent;

/* send messg ~

"* Receive a variable length message from either the ms or mc sockets.

"* Use select() to receive from ready socket into messgbuf If received

"* fr-om ins, then messgbuf contains only "messg" and can be transferred.

138



~4 N

* If received from mc, then messgbuf has the sender's address at the
* front which is extracted into "from", then extract "messgb.

* Note: recvmessg allocates memory for the received gid lists and

* data. Messg is returned with pointers pointing to these new lists

* and data. The lists and data must be deallocated when no longer

* needed, and before a new message is formed. Otherwise, the links to

* the memory will be lost, and the memory cannot be recocered.

int recv_messg(ms, mc, messg, from, timeout)

int ms, mc; /* socket fd's */

struct message *messg; /* to hold incoming message */

struct sockaddr in *from, /* extract sender's address */

struct timeval timeout; P* for variable timeout */
I

char messgbuf[MAXMSGLEN], *mp; P* message buffer and pointer */

int len = sizeof(*from);

int ready, sent = 0;

fdset fdread; /* fd mask for select() */

char *datastr, *data; /* to receive messg.data */

P* initialize for reception from multiple sockets */

FD_ZERO(&fdread);

FD_SET(ms, &fdread);

FD_SET(mc, &fdread);

P* wait until either socket is ready to be read */

if ((ready = select(32, &fdread, 0, 0, &timeout)) < 0) 1

perror("select error");

return -1;

if (ready) I

bzero((char *)messg, sizeof(*messg));

if (FDISSET(ms, &fdread)) { P* received from ms socket */

printf("received at MS socket\n");

139



if ((sent =recvfrom(ms, messgbuf, MAXMSGLEN, 0, from, &len)) < 0)
perror("error in message rec'd");
return - 1;

else /* extract message from messgbuf ~
mp = messgbuf., 1* set ptr to beginning of message ~

if (FD-ISSET(mc, &fdread)) 1* received from mc socket *

printf("received at MC socket\n"),
if ((sent = recvfrom(mc, messgbuf, MAXMSGLEN, 0, from, MIen)) < 0)

perror("error in message rec'd');

return -I1;

else / * extract sender address & message from messgbuf *
bzero((char *)from, len);
bcopy(messgbuf, (char *)ffrom, fen);
mp = messgbuf + len; /* set ptr to beginning of message ~

P~ extract messg, exclude & subject lists, and any data from messgbuf *
bcopy(mp, (char *)messg, sizeofi*messg));
mp += sizeofi*messg); /* skip to lists */
if ((len =extractgid-list(mp, &(messg->exclude -list),

ntohs(messg->excl-fist-len))) != ntohs(messg->excl-list -len))
printf("error in extracting exclude list: len =O/od~LJIO, len);
return -1;

if (debug) pnintf("len = O/ad gids extracted\n', len);
mp +-- (ntohs(messg->excl list-len))*2; /* skip to end of list *

if (debug) printf("mp-messgbuf = %d\n'6 , mp-messgbut);
if ((len = extractgid -list(mp, &(messg->subject list),

ntobs(messg->su~j list len))) != ntohs(messg->subj list l en))
printf("error in extracting subject list: len = %d\n", len);
return - 1;

140



.- ~~~M A Xt .~ .- '

if (debug) printf("len = /od gids extracted'n", len),
mp += (ntohsgmessg->subj list len))*2; /* skip to end of list *

if (debug) printf("mp-messgbuf = O/od\nJ", mp-messgbuf),

if(!(data = (char *) malloc (ntohs(messg->data -len))))
perror("unable to allocate memory for data");
return - 1;

P~ copy received data into messg.data ~
bcopy(mp, data, ntobs(messg->data-len));
messg->data = data;

if (debug) printf("after data: mp-messgbuf = %d\n",mp-messgbuf);

if (debug) ( /* create temporary data string to print messg.data *
printf("messg->data-len = %d\n", ntohs(messg->data-len));
if (!(datastr = (char*) malloc (ntohs(messg->data-len)+1)))

perror("unable to create data string");
bcopy(mp, datastr, ntohs(messg->datal1en));
datastr[nto~hs(messg->data-len)] = NULL; /* make string ~
printf('data ree'd: %s\n", datastr);

free(datastr);

/* ready *

amn sent,
P~ recv-messg ~

* Set timer to current time + timeout time t -usec. Converts t usec to
* seconds and useconds, and adds to timer.tv -sec & timer.tv-usec,
* respectively. If useconds exceed 1,000,000, a carry to seconds is
* performed.

141



void set-timeout(timer, t-usec)

struct timeval *timer; P timer to set ~
long t~usec; P* timeout period in usec.~

struct servent tzp; /* for timting *

if (t usec == MAXTMIE) 4 1 set sec & usec to MAXTIME *

timer->tv sec = MAXTIME;
timer->tv usec = MIAXTIME;

else 4 /* set timer to current time + t-usec ~

if (gettimeofday(timner, &tzp) ! =NULL)4
pefror("unable to gettimeofdlay");

exit(-l1),

P* add t-usec to timer ~
timer->tv-sec += t-usec / SEC, P* add seconds *

timer->tv_usec += t-usec % SEC; P* add useconds ~
if (timer->tv-usec >= SEC) P I carry I sec. ~

timer->tv-usec -= SEC,

P / set timeout ~

*Check if timer has timed out. Returns I if current time > timer,
*0 otherwise.

int timed out(timer)

struct timeval timer; /* timeout timeval/

142



struct timeval tp, /* for time stamps/
struct servent tzp; /* for timing/

if(gettimeofdlay(&tp. &tzp) !NULL) I
perror("unable to gettimeofday"),
exit(- I),

return ((tp.tv-sec > timer.tv-sec) I
((tp.tv_sec == timer.tv-sec) && (tp.tv-usec > timer. tv-usec)));

/* timed-out ~

*Search a list of gid entries pointed at by gid-list for "gid". Return
I if the gid is found, 0 otherwise.

int searchgid list(gid list, gid)

struct gid entry *gjd_list;
u-short gid;

struct gid -entry *gp = gid list,
int found = 0;

while (gp && !found)
found = (gid = gp->gid);
gp = gp->next

return found;
/* search~gd,_list *

143



* Add a new node to the head of the list of giJ, ntries pointed at by

* gidrlist. Return I if successfil, 0 if unable to add to list.

int addgidentry(gid_list, gid)

struct gid entry **gid list; /* pointer to gidrlist pointer */

u_short gid;

struct gidrentry *gp;

if(search.gidlist(*gid-list, gid)) /* duplicate gid found in list */

return 0;

/* allocate new gid entry */

if (!(gp = (struct gid-entry *) malloc (sizeof(struct gid entry)))) I

perror("unable to create new gid entry");

return 0;
}

/* add new entry to head of gid list */

gp->gid = gid;

if(!(*gidlist)) /* if empty gid list */

gp->next = NULL;
else /* nonempty list., insert at head */

gp->next = *gidlist;

*gidlist = gp;

return I;

/* add_.gid entry */

• Copy the gids from a list of gidentries pointed at by gidlist into

• a buffer of characters. Since each gid is u short, it will take 2

• bytes. Uses pointer math to increment through buffer to place gids.

• Returns the number of gids copied or 0 for an error.

144



int copygid list(gid list, buffe)

struct gid-entry *gid list;
char "*buffer; /* pointer to buffer ~

struct gid -entry *gp = gid list;
char *cp = *buffer-,

if (debug) printt("copygid list: cp-(*buffer) = /dfn", cp-(*buffer));-
while (gp) ( P* copy gids one at a time *

if (debug) printf("gp->gid = O/@df", gp->gid);
bcopy((char *)&(gp->gid), Cr. 2);
cp += 2; /* _short =2 bytes*
gp -=gp->next;

if (debug) printfW(cp-(*buffer))/2 = %d\n", (cp-(*buffier))I2);

return (cp - (*buffer)) / 2; /* number of gids copied *

P / copygid-list *

*Extract gids from a buffer of characters into a list of gid entries
*pointed to by gid -list. Each gid is 2 bytes in the buffer. Uses
*pointer math to increment through buffer to place gids.
*Returns the number of gids extracted or 0 for an error.

int extract~gd list(buffer, gid-list, list-len)

char *buffer,
struct gid entry * *gjd list; /* pointer to gid list pointer ~
u-short list-len;

u-short i = 0; P* count of gids ~
u-short gid;

145



*gidlist = NULL,

while (i < list len) I /* extract gids one at a time */

bcopy((buffer + (i*2)), (char *)&gid, 2),

if (!(addgid entry(gidlist, gid)))

return 0,/* unsuccessful add */
i++,

return i; /* number of gids extracted */

/* extractgid list */

* Remove all gids from a list of gid entries pointed at by gidfist and

* free all memory. Uses two pointers, ngp and cgp to walk through list

* and free each entry.

void deletecgidlist(gidjlist)

struct gid entry **gidlist;
4

struct gid entry *ngp, *cgp = *gidlist;

while (cgp) ( /* current gid ptr = NULL */

ngp = cgp->next; /* get next entry */
free(cgp); /* free current entry */

cgp = ngp,
}

*gid list = NULL;

/* delete.gid list */

* Print message fields.

146



void print messgtmessg)

stnzct message messg,

char *datastr; /* to convert data to a string ~

printf("version: %d\n", ntohs(messg.vers)),
printf("checksum: %d\n", ntohl(messg.checksum));

printfiT"group_ name: %A~n", messg.group name);
printf("authentication: %d\n", ntohl(niessg. authentication));
printf('"group view: O/od\n", ntohs(messg.group_view));
printf('sender~gid: %d\n", ntohs(messg. sendergid));
printf("subject__gid: %d\n", ntohs(messg.subjectjid));

printf("subject -addr: %d\n", ntohl(messg. subject-addr));

printf(" subject -rank: %d\n", ntohs(messg. subject_rank));
printf("msg type: of);
switch (ntohs(messg.msg_type)) I

1* monitoring message types */
case QUERY: printf(" QUERY\n"); break,

case REPLY: printf(" REPLY\n");, break;
/* mserver INITIATE message types */
case MJOIN: printf(" MJOIN\n");, break;

case MLEAVE: printf(" MLEAVEWn"), break,
case MSPLIT: printfW' MSPLIT\n"); break;

case MMERGE: printf(" MMERGE\n"); break;

case MADDPARENT: printfW' MADDPARENTRn"); break;

case MDELPARENT: printf(" M-DELPARENT\n"); break;

case MSTATSS: printf(" MSTATSS\n"); break;

case MSTATSL: printf(" MSTATSL\n"); break;

case MFAIL: printf'o MFAIL\n"); break;

case MMULTIFAIL: printfW' MMULTIFAIL\n"), break;

case MCOORDFAIL: printf(" Mf_COORI)_FAIL\n"); break;

147



/* change sequence message types ~
case ACK: printfU' ACK\n"), break,
case COMMIT: printfW COMMIThi"). break,.

case WAIT: printf(" WAIT\n"), break,
case M[SGQLERY: printt(" MSGQUERY\n"), break-,
case INIT: printf(" INIThV'); break-,
/* external physical requests to core-set */
case MJOIN REQ: printfW' M_JOINREQ\n"); break,
case MLEAVEREQ: printtC" M_LEAVE REQ\n"), break,
case MSPLITREQ: printf(" M_SPLIT_-REQ\n"), break,
case MMERGEREQ: printt(' MMERGE REQ\n"), break,
case MADD PAR REQ: printf(" MADDPAR REQ\n"), break,
case MDEL PARREQ: printf(" M[_DEL_PARREQ\n"), break-,
case MSTATSS_-REQ: printf(" MSTATSS-REQ\n"); break;
case MSTATSLREQ: printflC M_STATSLREQ\n"). break,
I* application group INITIATE message types *1
case AJOIN: printfil' A_JOIN\n"); break;
case ALEAVE: printf(" ALEAVE\n");, break-,
case ASPLITQ: pnintf(" ASPLIT\n"); break,
case AMERGE: pfintf(" A-MERGE\n"); break,
case ASTATSS: printfW ASTATS_S\n"); break,
case ASTATSL: printfi:" ASTATS_-L\n"); break,
case SUBM[IT: printfl" SUBMIT\n"); break,
case DIRECT: printf(" DIRECT\n'); break,
/* application group request message types 1/
case AJOINREQ: printf(" A_JOINREQ\n"); break;
case ALEAVEREQ: printf(' ALEAVE REQ\n"), break;,
case ASPLITREQ: printf(" ASPLITREQ\n"); break,
case A MERGE_,REQ: printf(" AMERGE REQ\n"), break,
case ASTATSSREQ: printf(" ASTATS_SREQ\n"), break,
case ASTATSL_-REQ: printf(" ASTATS_,L_REQ\n"), break,
/* mcaster message types */
case JOINGROUP: printf(" JOINGROUP\n"); break,
case LEAVEGROUP: printf(" LEAVEGROUJPt"); break;

148



case JOINACK. printf(" JOINACK\n"). break;

case DUPMEMBER: prjfltf(" DLTP_-MEMBER\n"), break;

case NEGJOIN: printfI" N`EG_JOIN~n'); break,

case LEAVEACK: printftU LEAVEACK\n"); break,

case NOGROUP: printf(" NOGROUP\n"); break,

case NOMEMBER: printf(" NOMENIBER\n"), break;

case NEGLEAVE: printf(" NEGLEAVE\n"), break-,

default: printf(" %d\n", ntohs(messgmrsg type));

printf("exclude-list:")
printgdid ist(messg.exclude list);

printf('excl-list-len: %d\n". ntohs(messg.excl-list_len));

printf('subject list: "),

printid-list(messg.subject-list);

printfW'subj list len: %d\n", ntohs(messg.subj list-len));

printf("data-len: 0/od\n", ntobs(messg.data_len));

/* create temporary data string to print messg.data */

if (!(datastr = (char*) malloc (ntohs(messg. data-len)+ I)))
perror("unable to create data string");

bcopy(messg. data, datastr, ntohs(messg.data-len));,

datastr~ntohs(messg. data -len)] =NULL; /* make string *
printf("data: %s\n", datastr);

free(datastr);

/* print messg ~

*Print in-addr IP addresss.

void print in addr(addr)

struct in-addr *'addr;

149



char *ip__addr =(char*)inet-ntoa(* addr);,

printf("IP address = %A~n", ip_addr),

/* print_in-addr *

*Print sockaddr in address structure info.

void print_sock-addr(sin)

struct sockaddr-in sin;/* socket address structure ~

printt('family: %d \n", ntohs(sin.sin -family));

printf("port: %d \n", ntohs(sin.sin~port)),

print -in -addr(&sin. sin-addr. s-addr),

/* print-sock-addr ~

*Print socket info.

void print_sock-info(s, sin)

int s; /* socket fd *

struct sockaddr-in sin;/* socket address structure ~

mnt len =sizeof(sin);
if (getsocknaxne(s, (struct sockaddr *) & sin, &Men) < 0)

perror("can't get socket info"),

exit(1);

pfintt("Socket Info: \n");

printt("socket: %d \n", s);

150



print sock addr(sin);
/* pnint sock info *

*Print hostent structure info.

void print hostent(hp)

struct hostent *hp;

char *af =hp->h addrtype 2 ? "AF INET": "non-AFINET";

printf("Hostent Info: \n");
printf("h_name: %s\n", hp->h -name);
printf("b -aliases[O]: %sAn", hp->h-aliases[O]);
printf('h-addrtype: %s\n", at);
printf("h length: %d\n", ntohs(hp->h length));

printf("h -addr: %s\n", mnet-ntoa(*(struct in-addr*X(hp->h-addr)));
printf('b -addr -list[O]: %s\n", inet-ntoa(*(struct in addr*) (hp->h-addrlfist[O])));

)/* print hostent ~

*Print all gids from a list of gid entries pointed at by gid list.

void print~gid list(gid list)

struct gid-entry *gid list;,

struct gid entry *gp = gid list;

if (!gp) printf(" empty list"),

else I
while (gp !=NULL)

151



printf(" O/.d ", gp->gid);
gp = gp->next, /* get next entry ~

/*I printgid list ~

152



* MCASTER.C ver 1.0 Multicast Emulator

* Program to emulate IP multicast in a unicast environment.

* Uses single socket for send & receive, with the IP address & port

* the st•ie as would be used for an IP multicast (port = MSPORT).

* Incoming messages are of "message" format, outgoing unicast messages

* are also of "message" format (for join & leave ACKs to members).

* Outgoing multicast messages have the original sender's sockaddrin

* prepended to the message, since mcaster overwrites the original

* sender's address with its own and the recipients have no other way

* of knowing who was the original sender.

* Note: this version has no error checking or diagnostic print state-

*ments... any erroneous message is simply discarded or delivered as

* is. For diagnostics, use MCASTERV.C, the same program with

* diagnostic print statements.

* Written by Dave Neely, March 1994.

* Modified 4/26/94

#include "msutil.c"

struct member I /* element in list of members */

struct sockaddr in addr;

u_char loop,

struct member *next;

struct group /* element in list of groups */

char name[MAXGROUPNAME];

struct group *next;

struct member *members,

struct member *last;

153



struct sockaddr in sin, I* socket address *
struct sockaddr in group addr;, /* group mcast address *
struct sockaddr in from, P received from address *
struct sockaddr in member. /* member address *

struct hostent *hp, P~ host entity struct ~
struct group *groupjlist, *lst~group, 1* global group list ptrs *

1* fujnctions */
struct group *seach~groupjlisto;
struct member *search -member -listo;
struct group *addgroup();
int add~memberO;
mnt join..groupo;
int remove~groupo;
mnt remove-membero;
mnt Ieave~groupo,
int mcasto,
void print~groupjlisto;
void print-member-listO;

maino

mnt S; 1* IP socket fd ~
u_short port;
int len;
int sent-,
char bostname[MAXGROUPNAMAE];
char hostaddr[ 17];
char msgbuf[MAXMSGLEN]; 1P to recv message ~
char *msgstr; P~ to copy message ~
short message_type, msglen;
short cc;

154



P~ initialize socket .
port = htons(MSPORT);,
s = iit_socket(sin.. port), /* mcaster socket *

print sock-info (s, sin);

/* get info about local host *
gethostname(hostname, MAXGROUPNAME),
if ((hp = gethostbyname(hostname)) ==0)

perror("unable to get hostname")-,
exit(- 1);

print-hostent(hp);
strcpy(hostaddr, mnet ntoa(*(struct in_addr*X(hp->h~addr)));

P* initialize group address structure *1
bzero((char*)&group__addr, sizeof(group_addr));
group addr.sin-family = hp->h-addrtype,
group addr. sin._port = htons(port),
groupaddr.sin-addr.s-addr = met-addr(bostaddr);
printf(9Group Address:\n"),
print sock addr(group addr),

for (;)4/*wait for incoming multicast messages ~

len = sizeoflfrom);
sent = recvfrom(s, msgbuf, MAXM4SGLEN, 0, &from, Mlen);

f* extract messg from buffer */
bzero((cbar *)&messg, sizecf(messg)),
bcopy(msgbuf, (char *)&me,;sg, sizeof(messg));

P* check type of received message */
message type = ntohs(messg.msg_type);
if ((message _type=JOIN GROUP)II(message type=--LEAVEGROUP))

member = from,
P* all members receive mcasts on the MCPORT/

155



member. sinport = MCPORT;

if (messagetype =- JOINGROUP)

cc = join group(messg.groupname, member, NO-LOOP),

else
cc = leavegroup(messg.groupname, member).

/* generate and send ACK for join or leave */
formmessg(&messg. messg.groupname, 0, messg.groupview,

0, cc, messg.sendergid, 0, 0, 0, 0, 0, 0),

len = sizeof(messg);
sendto(s, (char *)&messg, len, 0,

(struct sockaddr *)&from, sizeofstruct sockaddr));

else /* multicast unchanged message to group */

mcast(s, msgbuf, from),

/* main */

* Search group list for a group by its string name. Return a pointer

* to the group before the desired group, for ease of removing the

* group, or NULL if not found.

struct group *searchgrouplist (groupname)

char *groupname;

struct group *gp = group_list;

int notfound,

if (group list) { /* non-empty group list */
if (!(notfound = strcmp(gp->name, groupname))) /* found 1st one */

gp = lastgroup; /* set gp to element before 1st element */

else /* not the I st element - search for a match */

156



while ((notfound strcmp(gp->next->name, groupname)) &&

(gp->next != lastgroup))

9P = gp->next;

if(!notfound) I /P found! */

return gp;

S else group not found or empty group list */

return NULL;
/*searchgroup_fist */

• Search member list of a group pointed to by gp for member "mbr".

• Return a pointer to the member before the desired group, for

• ease of removing the group, or NULL if not found.

struct member *search memberlist (gp, mbr)

struct group *gp; /P points to the desired group */
struct sockaddr-in mbr; /* member address to locate */
4

struct member *mp = gp->members;

int found;

if(gp->members) 4 /* non-empty member list */

if (found = addrcmp(mp->addr, mbr)) /* found 1st one */
mp = gp->last; /* set mp to element before 1st element */

else /* not the I st element - search for a match */
while ((!(found = addrcmp(mp->next->addr, mbr)) &&

(mp->next != gp->last)))

mp - mp->next;

if(found)

return mp;

S/*else member not found or empty list */

157



return NULL;

/* searchmemberlist /

* Add new group "groupname" to list of groups. Return pointer to

* new group.

struct group *add group (groupname)

char *groupname;
I

struct group *gp;

/* create new group element */

if (!(gp = (struct group *) malloc (sizeof(struct group))))

return NULL;

/* connect new group into list */

if (!groupjlist) /* if groupjist is empty */

group list = gp;

else /* non-empty grouplist */

lastgroup->next = gp;

lastgroup = gp;

/* initialize new group element */

strcpy(gp->name, groupname);

gp->next = group_list; /* point new last element to I st element */

gp->members = NULL;

gp->last = NULL;

return gp;

1* addgroup *I

158



* Add new member to member list of group pointed to by gp. Return
* 0 if successful or negative value indicating reason for failure.
* mbr is a sockaddr in structure with the new member's address.
* loop is used to control loopback of message to sender,
* 0 = no loopback, I = loopback.

int add-member (gp, mbr, loop)

struct group *gp;
struct sockaddr in mbr;
u_char loop;

struct member *mp.

/* create new member */

if (!(mp = (struct member *) malloc (sizeof(struct member))))
return -3;

/*add to list */

if (gp->members -- NULL) /* if member list is empty */
gp->members = mp;

else /* non-empty groupjlist */

gp->last->next = mp; /* add to end of list */

gp->last = mp; /* new element is last in list */

/* initialize new member */

mp->addr = mbr;

mp->loop = loop;

mp->next = gp->members; /* point new last element to I st element */

return 0;
/* add-member /

159



* Join a new member to a group named "groupname". The IP address of

* the new member is in mbr, a sockaddrin struct. If the group exists,

* then the new member is added to the end of the member list. If the

* group does not exist, then a new group is first added to the group

* list, then the new member is added to the group. Loop is used to

* control loopback of messages to the sender: 0 = no loopback, I =

* loopback.

int joingroup (groupname, mbr, loop)

char *groupname;

struct sockaddr-in mbr;

u_char loop;

struct group *gp;

/* check if group exists */
if(!(gp = searchgroup list(groupname))) (/* group doesn't exist */

if(!(gp = addgroup(groupname))) /* so add a new group */

return NEGJOIN;

else { /* group exists*/

gp = gp->next; /* set gp to desired group */

if (search memberlist(gp,mbr)) /* member found in list */

return DUPMEMBER;

/* add new member to group */
if (addmember(gp, mbr, loop) < 0)

return NEGJOIN;
return JOINACK;

/* joingroup */

160



"* Remove group pointed to by gp->next from group list. The group has

"* had all* of its members removed and is now ready to be removed from

"* the list. Return 0 if successful, neg. value if unsuccessful.

int removegroup (gp)

struct group *gp. /* gp points to group prior to desired group */
{

struct group *rgp; /* group to be removed */

if (group_list == NULL) /* empty list */

return -6,

if (group_list -= lastgroup) I /* remove only member *1

free(groupjlist);
group list = lastgroup NULL;

else { /* remove desired group at gp->next */

rgp = gp->next; /* group to be removed */

gp->next = rgp->next;

if (groupjlist = rgp) /* remove first group */

groupjlist - rgp->next;

if (last group = rgp) /* remove last group */

lastgroup = gp;

free(rgp);

return 0;

/* removegroup */

161



* Remove a member pointed to by mp->next in group pointed to by gp.
* mp points to member prior to one to be removed. Returns 0 on success,

* neg. value on failure, and I if list is empty.

int removemember (gp, mp)

struct group *gp;

struct member *mp;

int cc;

struct member *rmp,

if (gp->members - NULL) /* no members to remove */

return -7;

if(gp->members gp->1ast) M /*last member to remove */

free(gp->members),
gp->members = gp->last NULL,

cc= 1;
}
else /* remove desired member at mp->next */

rmp = mp->next; /* member to be removed */

mp->next = rmp->next;

if(gp->members == rmp) /* remove firsi member */
gp->members = rmp->next,

if (gp->last = rmp) /* remove last member */

gp->iast = mp;
free(rmp);

cc = 0,

return cc;

/* remove-member */

162



* Allows a member "mbr" of a group to leave the group "groupname".

* If the member was the last one, the group is also removed from the

* group list. Trying to remove a member that doesn't exist, or a

* member from a group that doesn't exist, return error codes.

* Successful removal of a member returns LEAVE ACK code.

int leavegroup (groupname, mbr)

char *groupnamne;

struct sockaddr-in mbr;
{

struct group *gp, *dgp;

struct member *mp;

int empty = 0;

/* check if group exists */

if(!(gp = searchgrouplist(groupname))) /* group doesn't exist */

return NOGROUP;

/* gp points to group prior to desired group */

dgp = gp->next; /* set dgp to desired group */

if (!(mp = searchmemberlist(dgp,mbr))) /* member not found */

return NOMEMBER;

/* mp points to member prior to desired member */

empty = removemember(dgp, mp);
if (empty) removegroup(gp); /* remove group if empty member list */

return LEAVEACK;
/* leavegroup */

* Receives "message" and iteratively sends it to all members of

163



* the group "messg.group_name". Combines "message" with "from" address

* of sender in an extended format message, stored in messgbuf The

* mcast is sent to the MCPORT of each member. Loopback of message

* tu sender is controlled by a comparison of the sender's address

* (from) with the loop field of each destination member. On success,

* returns a count of the number of destinations sent to, on failure

* returns a neg. value.

int mcast(s, message, from)

int S, /* fd for mcast socket */

char *message; /* message to send */

struct sockaddr in from; /* sender of mcast */

char *messgbuf,

struct message messg,

int len, msglen;

struct group *gp;

struct member *mp;

int count = 0,

/* extract messg from buffer */

bzero((char *)&messg, sizeof(messg)),

bcopy(message, (char *)&messg, sizeof(messg));

/* form extended message */

msglen = sizeof(messg) + (ntohs(messg.excl list len) +

ntohs(messg.subjilist len))*2 + ntohs(messg.datalen);

len = msglen + sizeof(from),

/* allocate space for whole extended message */

if (!(messgbuf = (char*) malloc (len)))

return - I1

164



/* copy message into outgoing buffer *I

bzero(messgbuf,len);

bcopy((char *)&from, messgbuf, sizeoftfrom)),

bcopy(message, (messgbuf + sizeof(from)), msglen),

/* find group */
if(!(gp = searchgroupjlist(messg.groupname))) /*group not found */

return - I;

else I /* group found.. gp points to group prior to desired one */

gp = gp->next; /* get desired group */

mp = gp->last; /* mp = tail of member list */

/* set from port to MCPORT for addrcmp search */

from.sin._port = MCPORT;

if(mp != NULL) { /* non-empty list */

do I /* send to all */

mp = mp->next;
/* check for loopback to sender, then send to destination */

if (!((addrcmp(from, mp->addr)) && (mp->loop ý NOLOOP))) {

sendto(s, messgbuf, len, 0, (struct sockaddr *)&(mp->addr),
sizeof(struct sockaddr));

count-++;
}

} while(mp ! gp-Aast);
}

free(messgbuf);

return count;
I

/* mcast */

* Print group list.

165



void pnintgroup~list()

struct group *gp =last~group;

printf("GroupList :n");

if (gp) /* non-empty group list *

doI
gp = gp->next;
printt("%s\n",gp->nazne);

while (gp, != lastgrfoup),
else printf("Empty groupjlist\n");

/* print~group list *

*Print member list of a group pointed to by gp.

void print-member list (gp)

struct group * gp; 1* points to the desired group ~

struct member *mp =gp->last;

printf("MemberList for group %s:\n", gp->name);
if (mp) /* non-empty member list *

do f
mp = mp->next;
print -sock -addr(mp->addr),

printf("loop = %d\n\n", mp->loop);
)while (mp != gp-)Iast);

else printf("Empty member list\n");
/* print-member list *

166



* MSERVER.C ver 1.0

* Membership Server program.

* At present, includes:

* join & leave multicast group

* message sending & receiving

* pairwise monitoring

* working on change processing sequence

* Member failures are logged to file "failures".

* Written by Dave Neely, April 1994.

* Modified: 4/25/94

#include "msutil.c"

struct sockaddrin to, from; /* general use address structures */

struct hostent *hp; /* host entity struct */

u_short mygid, cw, ccw; /* mserver group IDs */

struct timeval tp; /* for time stamps */

struct servent tzp; /* for timing */
struct timeval recvtimeout; /* select() receive timeout */

struct timeval query timeout; /* timeout for monitoring query */

struct timeval reply timeout; /* timeout for monitoring reply */

struct timeval messg_timeout; /* timeout for response message */

struct timeval ACKtimeout; /* timeout for ACK message */

FILE *fp; /* file to record mserver failures */

int MCASTER,

main (argc, argv)

int argc;

char *argv[];

167

-" :=00009



u-short message_type;
u-short GV, gsize; /* group view no. and group size ~

int len, i, cc,
int recd, sent;
int retries = 2; /* monitoring retries for no reply *

char groupname[MAXGROIJPNAME).
char hostnanie[MAXGROUPNAMEI;

char IPaddr[ 16];
char groupaddr[ 16],
struct table -entry core table[MAXTBLSIZE]; I* core-set state table *

u-short coordinator; /* for change processing ~

long authentication = Ox7ffiRffh
struct gid entry *excl_list, *subj list, 1* lists of mserver gids *

u-short exci-list-len, subj list len;

if (argc != 8) (
pnintf("usage: mserver groupname grouplPaddr");

printf(" mygid cwgid cw-addr ccwgid ccw-addr\n");
exit(- I);

/* Note: no error checking on arguments
strcpy(groupname, argv[ 1]);
strcpy(groupaddr, argv[2]);
mygid = atoi(argv[3]),
cw =atoi(argv[4]);

ccw =atoi(argv[6]);

/*get info about local host *

gethostnanie(hostnanie, MAXGROUPNAME),
if ((hp, = gethostbynanie(hostname)) == 0)

perror("unable to get bostname");
exit(-]1),

print hostent(hp);

168



strcpy([Paddr, mnet ntoa(*(struct in-addr*)hp->h_addr))),

P~ initialize core-table */
bzero((cbar *)core -table, sizeoficore table));
core-table[niygid].addr = mnet-addr(IPaddr);
core-table~mygid].cw = cw;
core-table[mygidJ.ccw = ccw.
core-table[cw].addr = inet-addr(argv[5]),
core-table[ccw].addr = inet-addr(argv[7]),
core-table[cw].ccw = mygid;

core-tablefccwj.cw = mygid;

/* intialize gid lists */
exci-list-len = subjjlist -len = 0;
exci-list = subj list = NULL;

P* determine if EP multicast or MCASTER will be used *

#ifndef 1FFMULTICAST

MCASTER = 1;
#else /* check that group address is in Class D range ~

if ((inet addr(groupaddr) < mnet addrC'224.0.0.25 5")) I
(inet-addr(groupaddr) > mnet-addr("239.255.255 .255")))

MCASTER = 1;
#endif

printf("Mserver\n\n"),
printf("mygid: O/od, cw: O/od, ccw: %d\n", mygid,
core-table[mygid].cw, core-table[mygid].ccw),
pnintf("my ");

print -in addr(&(core table[mygid] .addr));
pnintf(" cw ");

print in-addr(&(core-table[cw].addr)),
printf("ccw "),

print-in-addr(&(core-table[ccw] .addr))-,

169



/* initialize general purpose "mns" & mcaster "mc" sockets *

ms = init-socket(sin, btons(MS PORT)),

print-sock_info (ins, sin),
mc = init socket(mcsin, htons(MC_PORT)),
print_sock_info (mc, mcsin);

/* initialize timeouts */
/*recv-timeout is an absolute period, not referenced to current time/

recv-timeout.tv-sec =TRECV / SEC, 1* set seconds */
recv-timeout.tv usec =TRECV % SEC; /* set useconds */
set_timeout(&query timeo~ut, TQUERY); /* set timer for next query ~

set_timeout(&reply__timeout, MAXT1IME); /* reset timer for reply *
set_timeout(&messg tieuMATM) /* reset messg timer ~

set-timeout(&ACK-timeout, MAXTIME); /* reset ACK timer ~

cc = join mcast~group(groupname, groupaddr);
switch (cc)I

case JOINACK:
printf("Group %s joined.\n", groupnaine);
break,

case DUPM[EMBER:
printt("Unabte to join group %s: duplicate member~n", groupnazne);
exit(- 1);
break-,

case NEGJOIN:
pfintf('Unable to join group %s.\n", groupnazne);
exit(- I);
break;

default :
printfl"Invalid code returned during group join.\n"),
exit(- I);

170



for (.,) 4 /* begin main loop/
len =sizeofifrom),

/* check if message ready *

if ((recd = recv messg(ms, mc, &messg. &from. recv-timeout)) > 0)
printf("MESSAGE RECEIVED~n");
printf("%/d bytes received:\n", recd);
print-messg(messg);
printf("from:\n");
print sock addr(from);,
message type = ntohs(messg.msg_type);

I. select appropriate action for received message type *
switch (message type) I

/* mserver set message types *

case QUERY:
/* check if query from cw neighbor in this group ~

if ((Q(strcmp(messg.group name, groupname))) &&
(from. sin-addr.s-addr == core-table[cw].addr))4

/* then send reply */

formn-messg(&messg, groupname,O,O, mygid, REPLY,
cw,O0.O,0,O,,0);

len = sizeof(messg);
if ((sent = send-messg(ms, messg, fromn)) != len)

printff "error in message length sent\n");

break;
case REPLY:

/* check if query from ccw neighbor in this group ~

if ((!(strcmp(messg.group__name, groupname))) &&
(from. sin-addr. s-addr == core-table[ccw].addr)) 4
/* then reset reply and query timers, and # retries */
printf("REPLY rec'd from %d, resetting timers~n",

171



ntohs(messg. sendergid));,

set-timeout(&reply timeout. MAXTIME);

set-timeout(&query timeout, TQUERY);

retries =2;

break,
/* mserver INITIATE message types */
case MJOIN: printf(" M-JOIN\n"), break,

case MLEAVE: printftC MLEAVE\n")-, break,
case NISPLIT: printt(" MSPLIT\n"); break,
case MMERGE. printtl" MMERGE\n"), break,
case MADDPARENT: printf(" NIADDPARENT\n'); break,

case NIDELPARENT: printf(" NIDELPARENTn'"), break,
case MSTATS_5: printf(" MSTATSS\n"); break;
case MSTATSL: pnintf(" MSTATSL\n"); break;
case MFAIL: printf(' M-FAIL\n"); break,
case MMULTIFAIL: printf(" MMULTIFAIL\n"); break;

case MCOORDFAIL: printf(" NICOORD-FAII~n"), break,
/* change sequence message types ~

case ACK: printfi" ACK\n"), break,
case COMMIT: printf(" COMMIT~n"); break,
case WAIT: printf(" WAIT\n"); break;
case MSGQUERY: pnintft" MSGLQUERY\n"), break;
case INIT: printfW' INIT\n"), break;
/* external physical requests to core-set */

case MJOINREQ: printftP MJOINREQ\n"); break;
case NILEAVEREQ: printil" MNILEAVE_,REQ\n"); break;
case MSPLIT REQ: printt(" M-SPLITREQ\n"); break;
case MMERGE_-REQ. printf(" M-MERGE_R.EQ\n")-, break,
case MADDPARREQ: printf(" MADDPAR REQ\n'3;break,

case MDELPARREQ: pnintf(" M-DELPAR REQ\n"), break,
case MSTATSS_REQ: printf(" MSTATS_-S_-REQ\n"), break,

case MSTATS_L_REQ- pfintf(" NISTATS_L_REQ\n"); break;
/* application group INITIATE message types ~

172



case AJOIN: pnntff* AJOIN\n"); break,
case ALEAVE: printf(* ALEAVE\n"). break,

case ASPLITQ: printtl' ASPLIT'n"), break,.

case AMERGE: printf(" AMERGE\n"), break-,

case ASTATSS: printf(' ASTATS S\n"), break-,

case ASTATS-L: printf(" ASTATSL\n"), break-,

case SUBM[IT: printf(" SUrBMIThi"), break,

case DIRECT: printf(" DIRECT~n")-, break,

/* application group request message types */

case A_JOIN_REQ: printf(" A_JOIN REQ\n"), break,

case ALEAVEREQ: printf(" ALEAVE REQ\n"), break,

case ASPLIT_-REQ: printf(" A_SPLITREQ\n"),- break;

case AMERGEREQ printf(" AMERGEREQ\n"), break,

case ASTATSSREQ: printf(" ASTATSSREQ\n"); break,

case ASTATS L-REQ: printf(' ASTATS_LREQ\n"), break;

/* mcaster message types */

case JOINGROUP: printf(" JOINGROUP\n");, break;

case LEAVEGROUP: printf(" LEAVEGROUP\n"), break;

case JOINACK: printt(" JOINACK\n"); break;

case DUPMEMBER: printf(" DliMIEMBER\n"); break,

case NEGJOIN: printf(" NEGJOIN\n"); break;

case LEAVEACK: printf(" LEAVEACK\n"); break;

case NOGROUP: printf(" NOGROUP\n'); break,

case NOM[EMBER: printf(" NOMEMBER\n"), break;

case NEGLEAVE: printf(" NEGLEAVE\n"); break;

default: printf(" %d\n", ntohs(messg.msgtype));

)/* switch */
/* if (recd >0)

if (recd < 0)

pnintf("error in message rec'd\n"),

/* check timeouts */

if (timed_out(query timeout)) I /* time to send a new query *
/* reset QUERY timer ~

173



set-timeout(&query timeout. T_QUERY)I-

/* set REPLY timer */

set-timeout(&reply timeout. TREPLY);

form -messg(&messg, groupname,0 ,0, mygid, QUERY, ccw, 0,0,0,0,0,0).;

fen = sizeof(messg);

to sin -family = AFJNET;
to.sinjport =htons(MSPORT);

to.sin-addr.s-addr = core table[ccw].addr;,

if ((sent = send messg(ms, messg, to))!= len) I

printfV'error in message length sent\n");

exit(-l1),

/* query~timeout ~

if (timed -out(reply timeout)) /*I retry or note failure ~
/* reset QUERY timer */

set timeout(&query timeout, T_QUERY),
if ((retries-) < 0) 4/* then ccw is failed *

retries = 2; /* reset retry counter ~

/* log an entry in failures file *

gettimeofday(&tp, &tzp);

if (fj = fopen("failures", "ia")) I

fprintf (fj,, "Member %d is detected fatiled by %d at Iod4 sec \n\n",
ccw, mygid, tp.tv-sec);

fclose(fp),)

/* At this point, would want to start fafil processing ~

set-timeout(&reply timeout, MAXTIME); /* reset reply timer ~

else I

/* set REPLY timer ~

set-timeout(&reply timeout, T-REPLY);

form_messg(&messg, groupnarne,0,0, mygid, QUERY,

ccw,0,O,0,0,0,0);

174



len sizeof(messg);

to~sin-fainily = AFINET,

to.sinjport = htons(MSPORT),

to sin-addr.s-addr = core table[ccw].addr,

if ((sent = send messg(ms, messg, to)) != len)

printf('error in message length sent\n"),

exit(- I),

/* reply timeout ~

/* main for loop ~

175



LIST OF REFERENCES

[I] K P Birman, "The process group approach to reliable distributed computing,"
Technical Report TR91-1216, Cornell University Computer Science Department,
Ithaca, NY, July 1991.

[2] F. Cristian, R. Dancey, and J. Dehn, "Fault-tolerance in the advanced automation
system," The 20th International Symposium on Fault-tolerant ('omputing, pp.
6-17, June 1990.

[3] L. L. Peterson, N. Buchholz, and R. D. Schlichting, "Preserving and using context
information in interprocess communication," ACM Transactions on Computer
Systems, vol. 7, no. 3, pp. 217-246, August 1989.

[4] D. Powell, M. Chereque, D. Drackley, "Fault-tolerance in Delta-4," Operating
Systems Review, vol. 25, no. 2, pp. 122-125, April 1991.

[5] F. Cristian, "Agreeing on who is present and who is absent in a synchronous
distributed system," Proceedings of the 18th International Conference on Fault
Tolerant Computing, Tokyo, Japan, pp. 206-21 1, 1988.

[6] S. Deering, "Host extension for IP Multicasting," Memo from Network Working
Group, Stanford University, August 1989.

[7] S. Deering, "IP Multicasting Extensions for 4.3BSD UNIX and related systems
(MULTICAST 1.2 Release)," RFC 1112, Stanford University, August 1989.

[8] R. Braudes and S. Zabele, "Requirements for multicast protocols," Memo from
Network Working Group, TASC, May 1993.

[9] A. M. Ricciardi and K. P. Birman, "Using process groups to implement failure
detection in asynchronous environments," ACM Symposium on Principles of
Distributed Computing, Montreal, Qutebec, ('anada, pp. 341-353, August 199 1.
Also available as TR9!-1 188, Dept. of Computer Science, Cornell University.

[10] R. D. Schlichting and F. Schneider, "Fail-stop processors: an approach to
designing fault-tolerant computing systems," ACM Transactions on Computer
Systems, vol. 1, no. 3, pp. 222-238, August 1983.

176



[fi] K. P Birman and T. A. Joseph, "Reliable communications in the presence of
failures," ACM Transactions on Computer Systems, vol. 5, no. 1, pp. 47-76,
February 1987.

p

[121 B. Rajagopalan, "A mechanism for scalable concast communication," Computer
Communications, vol. 16, no. 8, pp. 484-493, August 1993.

[13] F. Jahanian and W. Moran Jr., "Strong, weak and hybrid group membership,"
Proceedings of the Second Works-hop on the Management of Replicated Data,
Monterey, California, pp. 34-38, November 1992. Also available as Technical
Report RC 18040 (79173) 5/28/92, IBM Research Division, T. J Watson
Research Center, 1992.

[14) F. Jahanian, S. Fakhouri, and R. Rajkumar, "Processor group membership
protocols: Specification, design and implementation," paper presented at
Symposium on Reliable Distributed Systems, October 1993.

[15] J. M. Chang and N. F. Maxemchuk, "Reliable broadcast protocol," ACM
Transactions on Computer Systems, vol. 2, no, 3, pp. 251-273, August 1984.

[161 S. A. Bruso, "A failure detection and notification protocol for distributed
computing systems," Proceedings of the 5th International Conference on
Distributed Computing Systems, pp. 116-123, May 1985.

[171 A. El Abbadi, D. Skeen, and F. Cristian, "An efficient fault-tolerant protocol for
replicated data management," Proceedings of the 4th ACM Symposium on
Principles of Database Systems, pp. 215-229, 1985.

[18] P. Verissimo and J. A. Marques, "Reliable broadcast for fault-tolerance on local
computer networks," Symposium on Reliable Distributed Systems, pp. 54-63,
October 1990.

[19] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala, "Membership algorithm for
asynchronous distributed systems," Proceedings of the 11th International
Conference on Distributed Computing Systems, pp. 480-488, 199 1.

[20] S. Mishra, L. L. Peterson, and R. D. Schlichting, "Consul: A communication
substrate for fault-tolerant distributed programs," Technical Report TR 91-32,
Department of Computer Science, University of Arizona, 1991.

[21] J. Auerbach, M. Gopal, M. Kaplan, and S. Kutten, "Multicast group membership
management in high speed wide area networks," Proceedings of the 11th
International Conference on Distributed Computing Systems, pp. 231-238, 1991.

177



[22] R. A. Golding and D. D. E. Long, "The performance of weak-consistency
replication protocols," Technical Report ucsc-crl-92-30, Department of
Computer Science, University of California at Santa Cruz, July 1992.

[23] P. D. Ezhilselvan and R. de Lemos, "A robust group membership algorithm for
distributed real-time systems," Proceedings of the Real-Time Systems
Symposium, pp. 173-179, 1990.

[24] K. H. Kim, H. Kopetz, K. Mori, E. H. Shokri, and G. Gruensteidl, "An efficient
decentralized approach to processor-group membership maintenance in real-time
LAN systems: The PRHB/ED scheme," Symposium on Reliable Distributed
Systems, pp. 74-83, 1992.

[25] L. Rodrigues, P. Verissimo, and J. Rufino, "A low-level processor group
membership protocol for LANs," Technical Report Oct. 1992, Technical
University of Lisbon, Portugal, INESC, 1992.

[26] S. Levi and A. K. Agrawala, Fault Tolerant System Design, McGraw-Hill, New
York, New York, 1994.

[27] J. Misra and K. M. Chandy, Parallel Program Design - A Foundation, Addison-
Wesley, New York, New York, 1989.

[28] G. Andrews, Concurrent Programming - Principles and Practice, Benjamin/
Cummings, Redwood City, California, 1991.

[29] D. Comer and D. Stevens, Internetworking with TCP/IP, Vol. 1: Principles,
Protocols, and Architecture, 2nd edition, Prentice Hall, Englewood Cliffs, New
Jersey, 1991.

[30] G. M. Lundy and R. E. Miller, "Specification and analysis of a data transfer
protocol using systems of communicating machines," Distributed Computing,
vol. 5, no. 3, pp. 145-157, December 1991.

178



INITIAL DISTRIBUTION LIST

I Defense Technical Information Center 2
Cameron Station
Aexadria, Virginia 22304-6145

2. Dudley Knox Libaray, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5101

3. Chairman, Code EC
Deparimet of Electrical and Comput Engineering
Naval Postgraduate School
Monterey, California 93943-5121

4. Professor Shridhar B. Shukla, Code EC/Sh 3
Deparment of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

5. Professor Gilbert M. Lundy, Code CS/Lu
Deparment of Computer Science
Naval Postgraduate School -

Monterey, Caliiornia 93943-5118

6. LT David S. Neely
P.O. Box 63
Arnold, California 95223-0063

179


